
Chapter 8

Categorical covariates

In this chapter we discuss how to incorporate categorical covariates into a regression model.

8.1 Incorporating categorical covariates in a regressionmodel

In many applications one is interested to investigate the effect of a covariate, which divides

the whole population into several subgroups (not only just in two, as in the case of a binary

covariate). For example in the study of allergies in early childhood, one might divide the parents

according to their smoking status into four groups, i.e. we consider the covariate X1 defined as

X1 =































1 mother and father are both non-smokers

2 mother non-smoker, father smoker

3 mother smoker, father non-smoker

4 mother and father are both smokers

and we are interested in the differences between the groups with respect to the probabilities

π(x) = P(Y = 1|X1 = x)

with

Y =

{

1 Child do not suffer from an allergy

0 Child suffer from an allergy
.

We can of course simply estimate these probabilities by the corresponding relative frequency

of children with an allergy in each category as shown in Table 8.1. However, our aim is to assess

the differences between the categories, i.e. we are interested in the six pairwise comparisons and

a quantification of the corresponding six differences. We can quantify these differences on the

logit scale by introducing the parameters

δkl = logit π(l) − logit π(k) ,
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Category π̂(x) logit π̂(x)

1 0.22 -1.295

2 0.33 -0.720

3 0.28 -0.920

4 0.40 -0.425

Table 8.1: The four categories defined by X1 and the relative frequency π̂ of children suffering

from allergies within each category on the probability and the logit scale.

k l δ̂kl = logit π̂(l) − logit π̂(k)

1 2 0.575

1 3 0.375

1 4 0.870

2 3 -0.200

2 4 0.295

3 4 0.495

Table 8.2: The six pairwise comparisons: Differences in the empirical frequency of children

with allergies expressed on the logit scale.

and using the empirical estimates for π(x) we can of course obtain estimates for the parameters

δkl as indicated in Table 8.2.

The reader should note that indeed any of the six values δkl is of subject matter interest in

the application. δ12 describes the effect of “Father only smoking”, δ13 describes the effect of

“Mother only smoking”, δ14 describes the effect of “Father and mother smoking”, δ24 describes

the effect of “Mother smoking additional to father smoking”, δ34 describes the effect of “Fa-

ther smoking additional to mother smoking”, and δ23 compares the the effect of “Mother only

smoking” with the effect of “Father only smoking”.

If we would like to approach the estimation of δkl in the framework of a regression model,

we have a slight complication. This is related to the fact that if we know for example δ12 and

δ23, we also know δ13 = δ12 + δ23, and if we know δ12 and δ13 we know δ23 = δ13 − δ12 etc.

So although we have six parameters, we have only three “free” parameters in the sense, that if

we know for example δ12, δ13, and δ14, then we also know δ23 = δ13 − δ12 , δ24 = δ14 − δ12 and

δ34 = δ14 − δ13. In a regression model formulation we will find only three “free” parameters,

and they are typically chosen as

β(1)x = δ1x for x = 1, 2, 3, 4

with the convention β
(1)

1
= δ11 = 0. The logistic model for π(x) = P(Y = 1|X1 = x) reads now

logit π(x) = β0 + β
(1)
x with x = 1, 2, 3, or 4 .

We can simply verify that β
(1)
x is identical to δ1x by noting

δ1x = logit π(x) − logit π(1) = β0 + β
(1)
x − β0 = β

(1)
x .
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If we fit this logistic regression model, we obtain an output like

variable beta SE 95%CI p-value

smokep 2 0.575 0.207 [0.168,0.981] 0.006

smokep 3 0.375 0.203 [-0.024,0.773] 0.065

smokep 4 0.870 0.163 [0.550,1.190] <0.001

and we can observe that β̂1,2, β̂1,3, and β̂1,4 coincide with the empirical estimates of δ12, δ13 and

δ14 in Table 8.2.

Now the simple comparison of the four categories might be misleading with respect to an

evaluation of the effect of smoking, because the effect of smoking might be confounded with

other factors. One candidate might be the parental allergy status, because we have previously

seen, that at least mothers with an allergy tend to smoke less than mothers without an allergy.

To adjust for this, we can consider a second covariate

X2 =































1 mother and father have no allergies

2 mother not affected by allergies, father affected

3 mother affected by allergies, father not affected

4 mother and father are both affected

and we can consider the logistic regression model

logit π(x1, x2) = β0 + β
(1)
x1
+ β(2)x2

.

The output from fitting this model may look like

variable beta SE 95%CI p-value

smokep 2 0.583 0.209 [0.173,0.993] 0.005

smokep 3 0.513 0.209 [0.103,0.922] 0.014

smokep 4 1.017 0.170 [0.683,1.350] <0.001

allergyp 2 0.367 0.176 [0.023,0.711] 0.037

allergyp 3 0.523 0.187 [0.157,0.890] 0.005

allergyp 4 0.759 0.191 [0.385,1.133] <0.001

and we can indeed observe that the adjusted estimates are larger than the unadjusted estimates.

Of course, you can include categorical covariates the same way in the classical linear regres-

sion model and you can mix categorical, continuous and binary covariates.

8.2 Some technicalities in using categorical covariates

In our above considerations we have slightly cheated. We have previously said that a logistic

regression model looks like

logit π(x1, x2, . . . , xp) = β0 + β1x1 + β2x2 + . . . + βpxp . (A)
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Now our model looks like

logit π(x1, x2, . . . , xp) = β0 + β
(1)
x1
+ β(2)x2

+ . . . β(p)xp
. (B)

The reader should not worry about this. As long as we are interested in a correct interpretation of

our parameters, the representation (B) together with the considerations of the previous section

is perfect.

However, with respect to the computation of the estimates it can be useful to shift the rep-

resentation (B) into one which follows the structure of (A), as this allows us to use the same

computational procedures to handle categorical covariates as to handle continuous and binary

covariates. This can be achieved by introducing for each category an indicator variable. If, for

example, covariate X j has k j categories, then we define the k j − 1 indicators

X̃ jk =

{

1 if X j = k

0 otherwise
for k = 2, 3, . . . , k j

which allows to represent β
( j)
x j as

β
( j)

2
x̃ j,2 + β

( j)

3
x̃ j,3 + . . . + β

( j)

k1
x̃ jk1

(note that at most one of the indicator variables is 1, hence we pick up this way the correct β
( j)
x j )

and we can express (B) as

logit π(x̃12, x̃13, . . . , x̃1k1 , x̃22, x̃23, . . . , x̃2k2 , . . . , x̃p2, x̃p3, . . . , x̃pkp)

= β0 + β
(1)

2
x̃1,2 + β

(1)

3
x̃1,3 + . . . + β

(1)

k1
x̃1k1 + β

(2)

2
x̃22 + β

(2)

3
x̃23 + . . . + β

(2)

k2
x̃2k2 + . . .+

+ β
(p)

2
x̃p2 + β

(p)

3
x̃p3 + . . . + β

(p)

k1
x̃pk1 .

Most statistical packages do this step internally when handling categorical covariates.

It is an unlucky consequence of reducing the parameters δ jk of interest to a few free parame-

ters β
( j)

k
that in the output of most computer programs we only find standard errors, confidence

intervals and p-values for the free parameters β
( j)

k
corresponding to the interest parameters δ1k,

but no inference on the remaining parameters δ2k , δ3k, . . . . In the example of the previous

section there was some interest in the parameter δ23 describing the difference in the effect of

maternal and paternal smoking. We can of course compute an estimate for this parameter (after

adjustment for the allergy status) as

δ̂23 = β̂
(1)

3
− β̂

(1)

2
= 0.51 − 0.58 = −0.07 .

But we have no chance to find a confidence interval or p-value for this parameter from the

output, because the standard error of δ̂23 is not just a function of the standard errors of β̂
(1)

3
and

β̂
(1)

2
.

So we have to convince the statistical package to produce standard errors, confidence intervals

and p-values for δ̂23. The better packages allow to require this directly by certain options or
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additional procedures. Some packages only allow to change the category we use as a reference

category. In our examples so far we have used 1 as reference category, such that β
( j)

k
refers to

the difference between category k and category 1 in covariate j. However, this is completely

arbitrary. You can chose any other category c as reference category, such that β
( j)

k
refers to the

difference between category k and category c, and especially β
( j)
c = 0. So to obtain inference on

δ̂23, we have just to convince our program to use 2 as reference category, such that β
( j)

3
= δ23.

The real lousy programs require that the user changes the coding of the covariates or to define

indicator variables by hand.

Remark: We would like to emphasize, that the assignment of numbers 1, 2, 3, . . . to the cat-

egories of a categorical covariate is completely arbitrary. You can use any other numbers or

letters or what you want to label the categories. Most statistical programs use numbers, and

we do it in this course for convenience, too. However, these numbers have only the task to

distinguish the categories and no further meaning.

8.3 Testing the effect of a categorical covariate

If it is the aim of a regression analysis to show that a certain covariate has an influence on

the outcome, then we can in the case of a binary or continuous covariate just try to reject the

null hypothesis H0 : β j = 0. In the case of a categorical covariate we have to reject the null

hypothesis

H0 : δkl = 0 for all k, l

in order to be able to state that the covariate has an influence. We can of course re-express this

null hypotheses in the free parameters of our regression model as

H0 : β
( j)

k
= 0 for all k .

Most statistical packages allow to perform such a test, either using the the Wald test principle

or the likelihood ratio test principle, which give usually similar results. (For more details see

Appendix C.3.)

The standard output of a regression model includes typically p-values for the single parame-

ters, but the reader should be aware of that there is no simple relation between these p-values and

the corresponding overall p-value for the test of H0 : δkl = 0 for all k, l, and it may happen that

the results may look rather conflicting. Table 8.3 and Table 8.4 illustrate two typical conflicts. In

the first case the p-values of the two regression coefficients do not look very impressive. How-

ever, the overall p-value is less than 0.05. This happens because the reference category sitting is

actually intermediate between the two other categories: Subjects with low physical work load

have fewer sick days than subjects with an occupation implying typical sitting as the working

position, and subjects with high physical work load have more sick days. So in this table we

have omitted the highest of the three pairwise differences, namely that between high and low

physical work load with a β̂ of 3.4 and a p-value of 0.008. In the second example (Table 8.4)
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we compare fourteen regions in Denmark with respect to the hospitalisation costs per patients

hospitalised. At first sight, 4 of the 13 regression coefficients are – at the 5% level – significant

different from 0, suggesting, that we have some evidence for differences between the regions.

However, the overall p-value is only 0.25. Here we have to realise that we can build actually

91 pairs among the fourteen regions, and that our selection is somewhat “biased”, because it

turns out that the reference region Copenhagen is the most expensive: All other regions are

less expensive, as indicated by the negative regression coefficients. Hence the presented results

tend to include big pairwise differences, and in any case the largest of all pairwise differences.

It is more appropriate to relate the 4 significant differences to the 91 differences over all, and

this is much less impressive, as we have to expect about 4.5 significant differences among 91

differences by chance, even if their are no true differences between the regions.

category beta CI p-value overall p-value

sitting (reference)

low physical work load -1.8 [-4.4,0.7] 0.17 } 0.031
high physical work load 1.6 [-0.9,4.3] 0.21

Table 8.3: Regression analysis of number of sick days/year in dependence on the type of occu-

pation.

category beta CI p-value overall p-value

Copenhagen Region (reference)

Frederiksborg Region -0.38 [-0.94, 0.17] 0.179

Roskilde Region -0.60 [-1.15, -0.04] 0.034

West Zealand Region -0.44 [-1.00, 0.11] 0.115

Storstrm Region -0.05 [-0.60, 0.51] 0.864

Bornholm Region -0.33 [-0.89, 0.23] 0.244

Funen Region -0.64 [-1.20, -0.09] 0.023

South Jutland Region -0.49 [-1.04, 0.07] 0.085
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
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0.25

Ribe Region -0.09 [-0.64, 0.46] 0.754

Vejle Region -0.57 [-1.13, -0.02] 0.043

Ringkjbing Region -0.20 [-0.75, 0.36] 0.496

Aarhus Region -0.22 [-0.77, 0.34] 0.442

Viborg Region -0.26 [-0.82, 0.29] 0.351

North Jutland Region -0.59 [-1.14, -0.03] 0.038

Table 8.4: Regressions analysis of the hospitalisation costs (in 1000 USD) of each patient hos-

pitalised in Denmark in 1998-2002 in dependence on the region, adjusted for age and sex.

8.4 The handling of categorical covariates in Stata

The two categorical covariates used in Section 8.1 can be found in the dataset allergy3.
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. use allergy3, clear

. list in 1/10

+----------------------------------------+

| childnr allergyc smokep allergyp |

|----------------------------------------|

1. | 1 0 1 1 |

2. | 2 1 1 1 |

3. | 3 0 1 3 |

4. | 4 1 1 3 |

5. | 5 0 1 2 |

|----------------------------------------|

6. | 6 1 1 2 |

7. | 7 0 1 4 |

8. | 8 1 1 4 |

9. | 9 0 3 1 |

10. | 10 1 3 1 |

+----------------------------------------+

We have besides the binary outcome variable allergyc the two categorical covariates smokep
and allergyp. The coding of these covariates has been explained in Section 8.1.

To compute the unadjusted effects for the different categories of the parental allergy status on
the allergy status of the child we can use

. xi: logit allergyc i.smokep

i.smokep _Ismokep_1-4 (naturally coded; _Ismokep_1 omitted)

Iteration 0: log likelihood = -693.45852

Iteration 1: log likelihood = -678.39626

Iteration 2: log likelihood = -678.29045

Iteration 3: log likelihood = -678.29044

Logistic regression Number of obs = 1125

LR chi2(3) = 30.34

Prob > chi2 = 0.0000

Log likelihood = -678.29044 Pseudo R2 = 0.0219

------------------------------------------------------------------------------

allergyc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_Ismokep_2 | .5746724 .2072584 2.77 0.006 .1684535 .9808914
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_Ismokep_3 | .3748066 .203354 1.84 0.065 -.02376 .7733731

_Ismokep_4 | .870092 .1630818 5.34 0.000 .5504575 1.189727

_cons | -1.294727 .1261929 -10.26 0.000 -1.542061 -1.047393

------------------------------------------------------------------------------

The xi: construct tells Stata, that we would like to include categorical covariates in our model,

and the i.smokep tells Stata, that we would like to use smokep as a categorical covariate. If we

would just say smokep, Stata would use this variable as a continuous one. Stata has chosen the

category with the smallest value as a reference category. This is the standard strategy of Stata,

called “natural coding”. This first line of the output saying “naturally coded” reminds the

user on this.

To adjust our effect estimates for the effect of the allergy status of the parents, we add the
covariate allergyp to the model. Since this is also a categorical covariate, we have to use
again the i.-notation.

To obtain the odds ratio adjusted for maternal smoking we can use

. xi: logit allergyc i.smokep i.allergyp

i.smokep _Ismokep_1-4 (naturally coded; _Ismokep_1 omitted)

i.allergyp _Iallergyp_1-4 (naturally coded; _Iallergyp_1 omitted)

Iteration 0: log likelihood = -693.45852

Iteration 1: log likelihood = -669.34423

Iteration 2: log likelihood = -669.10843

Iteration 3: log likelihood = -669.10835

Iteration 4: log likelihood = -669.10835

Logistic regression Number of obs = 1125

LR chi2(6) = 48.70

Prob > chi2 = 0.0000

Log likelihood = -669.10835 Pseudo R2 = 0.0351

------------------------------------------------------------------------------

allergyc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_Ismokep_2 | .5829577 .2090785 2.79 0.005 .1731714 .992744

_Ismokep_3 | .512587 .2089995 2.45 0.014 .1029555 .9222186

_Ismokep_4 | 1.016536 .1702369 5.97 0.000 .6828781 1.350194

_Iallergyp_2 | .3668414 .1755227 2.09 0.037 .0228233 .7108595

_Iallergyp_3 | .5231563 .1870375 2.80 0.005 .1565696 .889743

_Iallergyp_4 | .7586479 .1907552 3.98 0.000 .3847746 1.132521

_cons | -1.692582 .1639953 -10.32 0.000 -2.014007 -1.371157
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------------------------------------------------------------------------------

The xi: construct does nothing else then to add the indicator variables described in Section
8.2. These covariates remain in the dataset, so we can take a look on them:

. list smokep _Ismokep_* in 1/10

+-----------------------------------------+

| smokep _Ismok˜2 _Ismok˜3 _Ismok˜4 |

|-----------------------------------------|

1. | 1 0 0 0 |

2. | 1 0 0 0 |

3. | 1 0 0 0 |

4. | 1 0 0 0 |

5. | 1 0 0 0 |

|-----------------------------------------|

6. | 1 0 0 0 |

7. | 1 0 0 0 |

8. | 1 0 0 0 |

9. | 3 0 1 0 |

10. | 3 0 1 0 |

+-----------------------------------------+

. list allergyp _Iallergyp* in 1/10

+-------------------------------------------+

| allergyp _Ialle˜2 _Ialle˜3 _Ialle˜4 |

|-------------------------------------------|

1. | 1 0 0 0 |

2. | 1 0 0 0 |

3. | 3 0 1 0 |

4. | 3 0 1 0 |

5. | 2 1 0 0 |

|-------------------------------------------|

6. | 2 1 0 0 |

7. | 4 0 0 1 |

8. | 4 0 0 1 |

9. | 1 0 0 0 |

10. | 1 0 0 0 |

+-------------------------------------------+

We can see that Stata has created indicator variables for the categories 2, 3, and 4 of the covari-
ates smokep and allergyp. These variables start with an I, followed by the original name,
followed by an and finished by the number of the category. Since list tends to abbreviate
long variable names, you can see here the full names:
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. list smokep _Ismokep_* in 1/5, abbreviate(16)

+-----------------------------------------------+

| smokep _Ismokep_2 _Ismokep_3 _Ismokep_4 |

|-----------------------------------------------|

1. | 1 0 0 0 |

2. | 1 0 0 0 |

3. | 1 0 0 0 |

4. | 1 0 0 0 |

5. | 1 0 0 0 |

+-----------------------------------------------+

. list allergyp _Iallergyp* in 1/5, abbreviate(16)

+-------------------------------------------------------+

| allergyp _Iallergyp_2 _Iallergyp_3 _Iallergyp_4 |

|-------------------------------------------------------|

1. | 1 0 0 0 |

2. | 1 0 0 0 |

3. | 3 0 1 0 |

4. | 3 0 1 0 |

5. | 2 1 0 0 |

+-------------------------------------------------------+

These names appear in the output of the logit command, as Stata uses these dummy indicator
variables as covariates as explained in Section 8.2. Note that the suffices 2, 3 and 4 do not
refer directly to the numbers use in coding the covariates, but just to the ordering of these values.
If you have a covariate xyz coded as 0, 1, 2, and 3, Stata will still create the dummies Ixyz 2,
Ixyz 3 and Ixyz 4, with for example Ixyz 2 referring to category 1 of xyz.

If we nowwant to know the additional effect of father’s smoking on the top of mother’s smoking,
we have to compare the category 4 = mother and father are both smokers with category 2 =
mother non-smoker, father smoker. We can do this using Stata’s lincom command:

. lincom _Ismokep_4-_Ismokep_2

( 1) - [allergyc]_Ismokep_2 + [allergyc]_Ismokep_4 = 0

------------------------------------------------------------------------------

allergyc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .4335785 .2001199 2.17 0.030 .0413506 .8258063

------------------------------------------------------------------------------
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such that we obtain as the estimate of this difference δ̂42 = β̂
(4)

1
− β̂

(2)

1
= 1.02 − 0.58 = 0.43

together with a standard error and a confidence interval.

To test the null hypothesis that the smoking status of the parents is not associated with the
allergy status of the child (taking the allergy status of the parents into account), we can use
Stata’s test or testparm command to obtain the overall p-value:

. test _Ismokep_2 _Ismokep_3 _Ismokep_4

( 1) [allergyc]_Ismokep_2 = 0

( 2) [allergyc]_Ismokep_3 = 0

( 3) [allergyc]_Ismokep_4 = 0

chi2( 3) = 36.12

Prob > chi2 = 0.0000

. testparm _Ismokep*

( 1) [allergyc]_Ismokep_2 = 0

( 2) [allergyc]_Ismokep_3 = 0

( 3) [allergyc]_Ismokep_4 = 0

chi2( 3) = 36.12

Prob > chi2 = 0.0000

Both commands do exactly the same, namely to perform a Wald test on the null hypotheses,

that all the three regression coefficients are 0. test requires to specify all parameters, whereas

testparm allows to use the * as a wildcard. In our example we can see that the effect of paternal

smoking is highly significant: the p-value is less than 0.0001. (Stata shows the value 0.0000,

but this means nothing else but that the p-value is so small that it cannot be represented by four

decimal digits. Hence the correct way to report this results is to write “p<0.0001”.)

To perform a likelihood ratio test, we have to perform the same steps as in the case of testing

a single parameter: It requires to fit the full model, to save the result under a chosen name. e.g.

“A” using the estimates store command, to fit the model without the covariate to be tested

and to compare the likelihood of this model with that of the full model saved as “A” using the

lrtest command:

. xi: logit allergyc i.smokep i.allergyp

i.smokep _Ismokep_1-4 (naturally coded; _Ismokep_1 omitted)

i.allergyp _Iallergyp_1-4 (naturally coded; _Iallergyp_1 omitted)

Iteration 0: log likelihood = -693.45852

Iteration 1: log likelihood = -669.34423

Iteration 2: log likelihood = -669.10843
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Iteration 3: log likelihood = -669.10835

Iteration 4: log likelihood = -669.10835

Logistic regression Number of obs = 1125

LR chi2(6) = 48.70

Prob > chi2 = 0.0000

Log likelihood = -669.10835 Pseudo R2 = 0.0351

------------------------------------------------------------------------------

allergyc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_Ismokep_2 | .5829577 .2090785 2.79 0.005 .1731714 .992744

_Ismokep_3 | .512587 .2089995 2.45 0.014 .1029555 .9222186

_Ismokep_4 | 1.016536 .1702369 5.97 0.000 .6828781 1.350194

_Iallergyp_2 | .3668414 .1755227 2.09 0.037 .0228233 .7108595

_Iallergyp_3 | .5231563 .1870375 2.80 0.005 .1565696 .889743

_Iallergyp_4 | .7586479 .1907552 3.98 0.000 .3847746 1.132521

_cons | -1.692582 .1639953 -10.32 0.000 -2.014007 -1.371157

------------------------------------------------------------------------------

. estimates store A

. xi: logit allergyc i.allergyp

i.allergyp _Iallergyp_1-4 (naturally coded; _Iallergyp_1 omitted)

Iteration 0: log likelihood = -693.45852

Iteration 1: log likelihood = -688.01197

Iteration 2: log likelihood = -687.99853

Iteration 3: log likelihood = -687.99853

Logistic regression Number of obs = 1125

LR chi2(3) = 10.92

Prob > chi2 = 0.0122

Log likelihood = -687.99853 Pseudo R2 = 0.0079

------------------------------------------------------------------------------

allergyc | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_Iallergyp_2 | .3579979 .1726649 2.07 0.038 .0195809 .6964149

_Iallergyp_3 | .3292157 .1790193 1.84 0.066 -.0216556 .6800871

_Iallergyp_4 | .5549968 .1820931 3.05 0.002 .198101 .9118927

_cons | -1.057454 .1042384 -10.14 0.000 -1.261758 -.8531508

------------------------------------------------------------------------------

. lrtest A

Likelihood-ratio test LR chi2(3) = 37.78
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(Assumption: . nested in A) Prob > chi2 = 0.0000

We can again observe that the effect of smoking is highly significant.

Remark: You can use the xi: construct and the i.-notation also for string variables. In this case

the category which is the first in alphabetic order is used as the references group. For numeric

variables the category with the smallest number is used. You can change this behaviour. (Type

help xi for more information about the xi construct.)

8.5 Presenting results of a regression analysis based on cate-

gorical covariates in a table

In most publications, results of a regression analysis are summarised in a table. As long as

one is working with binary or continuous covariates only, it is straightforward to present the

estimated regressions coefficient, confidence intervals and p-values. However, working with a

categorical covariate, we have regression coefficients, estimates of pairwise differences, confi-

dence intervals and p-values for all of them and the overall p-values. So we can rise the question

which of these numbers we should present.

Let us extend our example of the study on allergies in early childhood by considering the

following five covariates:

– Allergystatus of parents: A categorical covariate with the four categories mentioned

above.

– Social class: A categorical covariate with the categories I, II and III.

– Region: A categorical covariate with the two categories rural and urban.

– Breast feeding: A binary variable (yes or no).

– Age of mother at birth: A continuous covariate measured in years.

Table 8.5 shows results of the regression analysis in a way, you can typically find in the

medical literature. Table 8.6 shows the results in a manner, which I personally find much more

fair and useful. Let us discuss the differences.

– In the first table the results for Allergy of parents are presented relative to a reference cat-

egory chosen. This way we are not able to judge all pairwise differences, for example we

cannot obtain a confidence interval for the differences between the categories Father only

and Mother only. Since for a categorical covariate like Allergy of parents we are typically
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covariate β̂ 95% CI p-value

Allergy of parents (Reference: None)

mother only 0.43 [0.11,0.76] .0085

father only 0.30 [-0.04,0.63] .083

both 0.86 [0.51,1.20] <0.0001

Social class (Reference: I)

II 0.13 [-0.17,0.42] .41

III 0.51 [0.20,0.81] .0012

Region 0.30 [0.06,0.54] .016

Breast feeding 0.36 [0.12,0.61] .0036

Age of mother at birth 0.00 [-0.01,0.02] .76

Table 8.5: Results of a logistic regression analysis of the risk of developing an allergy in early

childhood in dependence of the parental allergy status, social class, region, breast feeding and

age of the mother

covariate β̂ 95% CI p-value

Allergy of parents <0.0001

mother vs none 0.43 [0.11,0.76]

father vs nome 0.30 [-0.04,0.63]

both vs none 0.86 [0.51,1.20]

father vs mother -0.14 [-0.51,0.24]

both vs father 0.42 [0.03,0.81]

both vs mother 0.56 [0.16,0.96]

Social class .0032

middle vs. low 0.13 [-0.17,0.42]

high vs. middle 0.38 [0.09,0.67]

Region .016

urban vs rural 0.30 [0.06,0.54]

Breast feeding 0.36 [0.12,0.61] .0036

Age of mother at birth 0.00 [-0.01,0.02] .76

Table 8.6: Results of a logistic regression analysis of the risk of developing an allergy in early

childhood in dependence of the parental allergy status, social class, region, breast feeding and

age of the mother

interested in all pairwise differences, we should include effect estimates and confidence

intervals for all differences, as done in the second table.

There is also some danger, that by representing only the difference to one reference category,

we give an overoptimistic impression about the differences among the categories. Since

we typical chose as a reference category a category with a low or high risk, we tend to

present big differences. This is illustrated by our example: The first table selects the biggest,

the third biggest and the fifth biggest difference and omits the smallest, third smallest and
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fifth smallest. So on average the three differences in the first table are bigger than the six

differences in the second table.

– In the second table the results for Social class are presented by only two of the three pair-

wise differences. This seems to be on first sight a contradiction to the recommendation

just given. However, social class is is covariate with ordered categories (or an ordinal co-

variate). In such a situation the interest is typically in the differences between neighboring

categories, and hence the presentation in the second table is more appropriate. (If one feels

that the differences between III and I is also of scientific interest, one can of course add this

difference.)

The argument of the overoptimistic impression applies also in the case of ordered categories,

and it is even more relevant here, because we often chose the lowest category as reference,

and if the risk is increasing with the categories, we run exactly in the problem discussed

above.

There exist also a further argument to prefer the presentation of the second table. In the case

of ordered categories, the scientific interest lies often in the question whether the difference

between the second and the third category is bigger or smaller than the difference between

the first and the second category. This can we directly judge in the second table where

we can compare 0.38 with 0.13. One may argue, that we can of course just subtract the

two estimates 0.51 and 0.13 of the first table to obtain the difference between the third and

second category. However, if one present results as odds ratios, this task becomes more

difficult. (See Exercise 8.7 later.)

– Table 8.6 is much more parsimonious with p-values than Table 8.5. It only reports the

overall p-value for each covariate, and not the p-values for (some) pairwise differences.

Such a parsimonious use of p-values is usually wise, because the more p-values we present,

the bigger becomes the danger of an misinterpretation, as discussed in Section 5.4. The

presentation of the first table invites the reader to focus on the small p-values, i.e. invites to

a “hunting for p-values” and might mislead the reader with respect to judging our overall

evidence for the effect of a covariate, as discussed in Section 8.3. The presentation of the

second table guides the reader to focus on the question, whether there is any difference

among the categories with respect to the effect on the outcome of interest. And this is

typically the first and main question if we work with a categorial covariate. If there is a

priori a certain interest in establishing a particular difference between two categories, then

one can of course decide to add a p-value for this difference or to provide this p-value in the

text of the article.

The reader should also remember our considerations in Section 8.3 that it is hard to deduce

an overall p-value from the pairwise p-values, as discussed in the previous section. So one

cannot argue that p-values for pairwise differences as shown in the first table can serve as a

substitute for the overall p-values in the second table.

– The presentation of the results for the covariate Region in the first table are insufficient,

because we can only see that there is a difference, but we cannot see, whether the risk is

higher in urban or rural areas.

This illustrates that is useful to distinguish between binary covariates (like Breastfeeding),
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where the name of the variable implies the meaning of the categories 0 and 1, and a di-

chotomous covariate (like Region), where we have just two categories. Since most statistical

packages treat the second situation by creating an indicator variable and hence mimicking

the situation of a binary variable, it is the responsibility of the user to ensure a correct pre-

sentation of the results.

A similar example can be seen by looking on the covariate Social class. In the first table,

the reader can only guess, whether social class I means low or high social level. The second

table adds important information by explicitly labeling the classes. This should remind the

reader, that the numbers we attach to categories are arbitrary, and that the user of a statistical

package is responsible for attaching a meaning to these numbers.

In summary, the reader should recognise that in presenting results of a regression model in a

paper the author has a choice. This choice should be led by the aim to present the results in a

fair, useful and understandable manner. The reader should find the results he or she is (or should

be) interested in, and nothing more. p-values should be used with care avoiding a misleading

focus on selected small p-values.

8.6 Exercise Physical occupation and back pain

The dataset backpain includes data from an epidemiological cohort study1 on the occurrence

of back pain. You can find information on the age, sex and social class of the subjects, their

physical occupation at the begin of the study and whether they suffer from back pain at baseline

(variable b0 ) and 5 years later (variable b5). Use the codebook command to become more

familiar with the coding of the variables.

a) What can we conclude about differences between the four types of physical occupation at

baseline with respect to the back pain status five years later, if we adjust for age and sex?

b) What can we conclude about the effect of age and sex? Try to express the sex difference

as an odds ratio.

c) One of the aims of the study have been to establish that high physical occupation is more

dangerous than moderate physical occupation with respect to the development of back

pain. What can we conclude about this difference?

d) What happens if we adjust for the social group?

e) Repeat the analysis a) now considering back pain at baseline as the outcome of interest.

Can you explain the differences in the results?

f) How would you analyse this data, if the title of the intended paper is The influence of the

type of physical occupation on the development of back pain?

1This study was analysed by Jan Hartvigsen as part of his PhD project. The results are published in ... I am in

debt to Jan for his kind permission to use this dataset.
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8.7 Exercise Odds ratios and categorical covariates

A study similar to that of the last exercise reports the results as odds ratios adjusted for age and

sex:

sitting (reference)

low 0.83

moderate 1.04

heavy 1.93

What is the odds ratio between heavy and low?


