
Chapter 18

Effect modification and interactions

18.1 Modeling effect modification
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Figure 18.1: Data from an exper-

imental study investigating the ef-

fect of the vitamin B intake on the

weight of mice.
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Figure 18.2: The data of Fig-

ure 18.1 with regression lines for

male and female mice.

In some applications one is interested in the question how one covariate may affect the effect

of another covariate. Figure 18.1 illustrates a typical situation of this type, in which the effect

of the vitamin B intake on the weight of mice seems to differ between male and female mice. If

we fit regression lines separately for male and female mice (Figure 18.2), it looks like that the

vitamin B has only a small effect in female mice, but a large effect in male mice.

Fitting two regression lines, however, does not directly allow to compare the two lines in the

sense of assessing the statistical significance of the difference between the two lines. This can
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248 CHAPTER 18. EFFECT MODIFICATION AND INTERACTIONS

be approached by considering a joint model across the two groups. Introducing the random

variables

X1 = Vitamin B intake (in mg)

and

X2 =

{

1 if mouse is male

0 if mouse is female

we can describe the situation by two separate regression models:

µ(x1, x2) =

{

βA
0
+ βA

1
x1 if x2 = 1

βB
0
+ βB

1
x1 if x2 = 0

(∗)

with βA
1
denoting the slope in male mice and βB

1
denoting the slope in female mice as the main

parameter of interest. However, this description does not have the usual form of a regression

model still. This can be approached by regarding X1 as actually two different covariates, one

defined in the male and one defined in the female mice:

XA1 =

{

X1 if x2 = 1

0 if x2 = 0

XB1 =

{

0 if x2 = 1

X1 if x2 = 0

We can now consider a regression model with the covariates XA
1
, XB

1
and X2 which reads

µ̃(xA1 , x
B
1 , x2) = β̃0 + β̃

A
1 x
A
1 + β̃

B
1 x
B
1 + β̃2x2 .

Here β̃A
1
denotes the effect of changing X1 in the male mice, and β̃B

1
describes the effect of

changing X1 in the female mice, and hence it is not surprising that β̃
A
1
= βA

1
and β̃B

1
= βB

1
. Indeed,

this model is equivalent to the “double” model (*) with the relations

β̃0 = β
A
0 , β̃

A
1 = β

A
1 , β̃

B
1 = β

B
1 , and β̃2 = β

B
0 − β

A
0

because in the case x2 = 0 we have

µ(x1, 0) = β
A
0 + β

A
1 x1 and µ̃(xA1 , 0, 0) = β̃0 + β̃

A
1 x
A
1 = β̃0 + β̃

A
1 x1

and in the case x2 = 1 we have

µ(x1, 1) = β
B
0 + β

B
1 x1 and µ̃(0, xB1 , 1) = β̃0 + β̃

B
1 x
B
1 + β̃2 = β̃0 + β̃2 + β̃

B
1 x1

Consequently, if fitting a regression model with the three covariates XA
1
, XB

1
and X2 to the data

of Figure 18.1, we obtain an output like

variable beta SE 95%CI p-value

intercept 47.714 7.845 [25.933,69.495] 0.004

dosemale 0.589 0.158 [0.151,1.026] 0.020

dosefemale 0.143 0.158 [-0.295,0.581] 0.416

sex 2.829 11.094 [-27.974,33.631] 0.811
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and we obtain β̂A
1
= 0.589 and β̂B

1
= 0.143 as the slope parameter estimates in males and females,

respectively. To assess the degree of effect modification, we will look at the difference between

the slopes, i.e.

γ = βB1 − β
A
1

and we obtain γ̂ = β̂B
1
− β̂A

1
= 0.589 − 0.143 = 0.446. By further steps we can obtain a

confidence interval of [−0.173, 1.065] and a p-value of 0.116. So the evidence we have in favor
for a true difference between male and female mice with respect to the effect of vitamin B

intake is limited. However, the large confidence interval suggests that the difference may be

substantial. Note that it does not make great sense to look at the p-values of β̂B
1
and β̂A

1
, since it

is not the aim of our analysis to assess the question, whether there is an effect in each subgroup,

but to assess whether there is a difference in the effect.
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female male

placebo treatment

female male

placebo treatment placebo treatment

number of patients 67 62 71 67

patients with decrease in BP 22 23 27 45

fraction of patients with decrease in BP 32.8% 37.1% 38% 67.2%

odds = fraction/(100-fraction) .489 .59 .614 2.045

logit=log(odds) -.715 -.528 -.488 .715

Figure 18.3: Data from a clinical trial on an antihypertensive treatment and a visualisation of

this data

Figure 18.3 illustrates a second example in which the effect of an antihypertensive treatment

is considered to be dependent on sex. We can see that in females the treatment difference can be

expressed as an empirical odds ratio of 1.207 = 0.590
0.489

, whereas in the males we obtain an odds

ratio of 3.331 = 2.045
0.614

, i.e. the treatment effect is much bigger in males, as we can also see in the

graph of Figure 18.3. We can now use logistic regression to obtain a confidence interval and a

p-value for the ratio between these two odds ratios, which describes to which degree sex alters

the treatment effect. Introducing the two covariates

X1 =

{

1 if treatment is given to the patient

0 if placebo is given to the patient
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and

X2 =

{

1 if patient is male

0 if patient is female

we can describe the situation again by a double regression model

logit π(x1, x2) =

{

βA
0
+ βA

1
if x2 = 1

βB
0
+ βB

1
if x2 = 0

and eβ
A
1 is identical with the odds ratio in males, and eβ

B
1 is identical with the odds ratio in

females. Consequently, eγ for γ = βB
1
− βA

1
satisfies

eγ = eβ
B
1
−βA

1 =
eβ

B
1

eβ
A
1

i.e. it is the ratio of the odds ratio in males and females.

As above it is equivalent to consider a regression model in the three covariates XA
1
, XB

1
and X2

and in fitting this model we obtain an output like

variable beta SE 95%CI p-value

intercept -0.716 0.260 [-1.226,-0.206] 0.006

treatmale 1.204 0.357 [0.504,1.904] 0.001

treatfemale 0.188 0.370 [-0.537,0.912] 0.612

sex 0.227 0.357 [-0.472,0.927] 0.524

The difference γ̂ = β̂B
1
− β̂A

1
= 1.204 − 0.188 = 1.016 corresponds to the difference we see in

Figure 18.3, and by further steps we can obtain a confidence interval of [0.009, 2.024]. By expo-

nentiating the estimate and the confidence interval we obtain 2.763 with a confidence interval of

[1.009, 7.568]. Note that 2.763 is exactly the ratio between the two empirical odds ratios 3.331

and 1.207 we have computed above.

The considerations above can be easily extended to categorical covariates. If, for example,

a categorical covariate X2 with three categories A, B, and C modifies the effect of another

covariate X1, we have just to construct for each category a covariate:

XA1 =

{

X1 if x2 =A

0 if x2 , A

XB1 =

{

X1 if x2 =B

0 if x2 , B

XC1 =

{

X1 if x2 =C

0 if x2 , C

and we proceed as above.
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Figure 18.4: The relative frequency of hypertension in dependence on the smoking status and

age in an observational study with 1332 subjects. Age is available in years and only grouped

into categories for this graph.

It remains to consider the case, in which we are interested in modeling the modifying effect of

a continuous covariate on the effect of another covariate. Figure 18.4 illustrates such a situation

with the two covariates

X1 =

{

1 subject is a smoker

0 subject is no smoker

and

X2 = age of subject (in years) ,

and we are interested in how age changes the effect of smoking.

Since X2 is a continuous covariate, we cannot apply the approach defining a version of X1
for any value of X2. Instead, we have to consider directly the model we are interested in, i.e. a

model allowing the effect of X1 to depend on X2. We can write such a model as

logit π(x1, x2) = β0 + β1(x2)x1 + β2x2 ,

i.e. we allow the regression coefficient of X1 to depend on the value of X2. The most simple

type of dependence is a linear relation, i.e. we specify the dependence as

β1(x2) = α0 + α1x2

such that α0 is the effect of X1 if x2 = 0 and α1 describes the increase of the effect of X1 if we

increase X2 by 1.0. If we now insert this in the model above, we obtain

logit π(x1, x2) = β0 + (α0 + α1x2)x1 + β2x2 ,

which we can rewrite as

logit π(x1, x2) = β0 + α0x1 + α1x1x2 + β2x2 . (∗∗)

This is a model we can fit directly to our data. We have just to introduce a new covariate

X3 = X1 × X2
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and we fit a linear model in the three covariates X1, X2 and X3. If we do this for the data of

Figure 18.4, we obtain an output like

variable beta SE 95%CI p-value

intercept -3.906 0.385 [-4.660,-3.152] <0.001

smoking 2.955 0.506 [1.963,3.947] <0.001

age 0.051 0.006 [0.039,0.064] <0.001

agesmoking -0.033 0.009 [-0.050,-0.016] <0.001

So we obtain the estimate α̂1 = −0.033, suggesting the the difference between smokers and non
smokers with respect to the probability of hypertension (on the logit scale) decreases by 0.033

with each year of age, or by 0.33 with 10 years of age. Or, if one prefers to use odds ratios, that

the odds ratio comparing smokers and non smokers decreases by a factor of e−0.33 = 0.72 with

ten years of age.

However, just presenting this result would be a rather incomplete analysis, as we only know,

that the difference becomes smaller, but we do not know, how big the effect of smoking is at

different ages. Hence it is wise to add estimates of the effect of smoking at different ages,

e.g. at the ages of 35 and 75. The effect of smoking at a certain age x2 is, as mentioned above,

α0 + α1x2. According to (**), α0 is just the coefficient of X1 in the fitted model, i.e. from the

output above we obtain α̂0 = 2.955. So we obtain estimates for the effect of smoking at the age

of 35 as

α̂0 + α̂1 × 35 = 2.955 + (−0.033) × 35 = 1.812 or an OR of e1.812 = 6.12

and at the age of 75 we obtain

α̂0 + α̂1 × 75 = 2.955 + (−0.033) × 75 = 0.506 or an OR of e0.506 = 1.66 .

So the odds ratio for the effect of smoking on hypertension is at the age of 75 only about a

fourth of the odds ratio at the age of 35.

Remark: Note that the computation of the effect of smoking at selected ages contributes also to

assessing the relevance of the effect modification. In our example, we observe a reduction of

the effect of smoking (on the logit scale) from 1.812 at age 35 down to 0.506 at the age of 75.

So over the whole range we have a substantial effect of smoking. However, the same estimate

of α̂1 will also appear, if the effect of smoking decreases from 0.612 down to −0.694. In this
case the effect of smoking vanishes with increasing age and has at the end the opposite sign.

Such a qualitative change is much more curios and typically much more relevant than the purely

quantitative change seen above.

18.2 Adjusted effect modifications

The adequate assessment of effect modifications may require to take other covariates into ac-

count. As an example, let us consider the data shown in Figure 18.5. The effect of alcohol
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Figure 18.5: The relative frequency of hypertension (on the logit scale) in dependence on smok-

ing status, alcohol consumption and sex.

−
1
.5

−
1

−
.5

0
.5

1
1
.5

lo
g
it
 (

re
l.
 f

re
q
.)

no yes
smoking

low high

alcohol consumption

Figure 18.6: The relative frequency of hypertension (on the logit scale) in dependence on smok-

ing status and alcohol consumption.

consumption seems to be roughly identical in all four subgroups defined by smoking status and

sex. However, if we ignore in our analysis the variable sex (Figure 18.6), it looks like that the

effect of alcohol consumption is bigger in smoking subjects. Indeed, if we fit a logistic model

to the data of Figure 18.6 allowing different effects of alcohol for smokers and non smokers, we

obtain an output like

variable beta SE 95%CI p-value

alcoholsmoker 0.801 0.218 [0.374,1.229] <0.001

alcoholnosmoker 0.385 0.230 [-0.067,0.836] 0.095

smoking 0.509 0.233 [0.052,0.965] 0.029

suggesting different effects of alcohol consumption for smokers and non smokers. However, if

we adjust the analysis for sex, we obtain an output like
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variable beta SE 95%CI p-value

alcoholsmoker 0.374 0.235 [-0.086,0.833] 0.111

alcoholnosmoker 0.418 0.244 [-0.061,0.896] 0.087

smoking 0.583 0.247 [0.100,1.067] 0.018

sex 1.390 0.172 [1.053,1.726] <0.001

with nearly identical effects of alcohol consumption for smokers and non smokers, as suggested

by Figure 18.5. The explanation for this striking difference can be found in Figure 18.7, in

which we have added the number of subjects in each subgroup. We can see that the subgroup of

smokers with high alcohol consumption is dominated by males, whereas in all other subgroups

the majority of subjects are females. And as males have in this study a higher risk for hyperten-

sion than females, this contributes to the high frequency of hypertension in smokers with high

alcohol consumption resulting in the pattern we have seen in Figure 18.6.

Hence this examples illustrates that it is important to adjust for potential confounders in the

analysis of effect modifications also.
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Figure 18.7: The relative frequency of hypertension (on the logit scale) in dependence on smok-

ing status, alcohol consumption and sex. The numbers indicate the number of subjects behind

the relative frequency.

18.3 Interactions

Whenever one starts to model an effect modification one has to be aware of a slight arbitrariness,

because we decide in advance that X1 modifies the effect of X2, and not vice versa. However,

these two perspectives are equivalent and – in principle – indistinguishable. Let us consider

for example Figure 18.4. We have used it to illustrate how age modifies the effect of smoking,

but we can also regard it as an illustration that the effect of age is different for smokers and

non smokers: The frequency of hypertension increases with age slower for smokers than for

non smokers. Similar in Figure 18.3 we may say that each treatment is associated with a sex
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effect of its own instead of that sex alters the treatment effect. It may happen that one of the two

perspectives sounds more logically but in principle both perspectives are correct.

The symmetry of both perspectives can be also nicely illustrated by our considerations above

in the case of continuous covariates. We have shown that modeling the modifying effect of X2
on the effect of X1 leads to the expression

β0 + (α0 + α1x2)x1 + β2x2

= β0 + α0x1 + β2x2 + α1x1x2 .

Now modeling the modifying effect of X1 on the effect of X2 leads to

β̃0 + β̃1x1 + β̃2(x1)x2

and assuming the β̃2(x1) is linear in x1 we obtain

β̃0 + β̃x1 + (α̃0 + α̃1x1)x2

= β̃0 + β̃x1 + α̃0x2 + α̃1x1x2

where α̃1 now describes how much the effect β2(x1) of X2 increases if we increase X1 by 1.0.

However, in both cases we obtain a linear model in the covariates X1, X2 and X1X2, hence the

values of α1 and α̃1 are identical. Hence this single number describes both the modifying effect

of X1 on the effect of X2 as well as the modifying effect of X2 on the effect of X1. Hence choosing

only one of these two interpretations is arbitrary.

The statistical literature avoids this problem by introducing the term “interaction”, i.e. instead

of talking about whether X1 modifies the effect of X2 or vice versa, we just say that the two

covariates interact. And instead of modeling the modifying effect explicitly as we have done

in the previous sections statisticians just add the product X1X2 as an additional term to the

regression model. This term is called an interaction term, and the corresponding parameter is

called an interaction parameter. And we have just seen that this makes perfect sense as this

parameter describes the modifying effect from both perspectives.

Adding the product of covariates makes perfect sense also in the case of effect modification

by a binary covariate. Let us assume that X2 is a binary covariate and we start with a model with

an interaction:

µ(x1, x2) = β̃0 + β̃1x1 + β̃2x2 + β̃12x1x2 . (∗)

Then

µ(x1, 0) = β̃0 + β̃1x1 and

µ(x1, 1) = β̃0 + β̃1x1 + β̃2 + β̃12x1 = β̃0 + β̃2 + (β̃1 + β̃12)x1 .

If we compare this with our explicit modeling of the effect modification

µ(x1, 0) = β̃
A
0 + β̃

A
1 x1 and

µ(x1, 1) = β̃
B
0 + β̃

B
1 x1
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we can observe that

β̃1 = β
A
1 and β̃1 + β̃12 = β

B
1

which implies

β̃12 = β
B
1 − β

A
1 .

Hence the interaction parameter β̃12 is nothing else but the differences of the slopes in the two

subgroups defined by X2, which we have already previously used to describe the difference

between the two subgroups with respect to the effect of X1. And of course this fits also to the

general interpretation of the interaction parameter: It describes how the effect of X1 increases

if we increase X2 by 1.0, and if the latter is a binary covariate, a difference of 1.0 means to go

from X2 = 0 to X2 = 1.

If we reanalyze the data of Figure 18.1 by a model like (*) with an interaction term, we obtain

an output like

variable beta SE 95%CI p-value

intercept 47.714 7.845 [25.933,69.495] 0.004

dose 0.143 0.158 [-0.295,0.581] 0.416

sex 2.829 11.094 [-27.974,33.631] 0.811

dosesex 0.446 0.223 [-0.173,1.065] 0.116

We can see that the estimate ˆ̃β12 = 0.446 coincides with the values of γ̂ we have computed

previously. If we want to obtain estimates of the effect of vitamin B intake in the two subgroups,

we have just to remember that for females (sex=0) our model reduces to

µ(x1, 0) = β̃0 + β̃1x1

so ˆ̃β1 = 0.143 is the estimated effect of vitamin B intake in females, and for males it reduces to

µ(x1, 1) = β̃0 + β̃2 + (β̃1 + β̃12)x1

so ˆ̃β1 +
ˆ̃β12 = 0.143 + 0.446 = 0.589 is the estimated effect of vitamin B intake in males.

So using interaction terms in regression models is a general framework which is equivalent to

an explicit modeling of effect modifications. Inclusion of interaction terms is directly supported

by most statistical packages, whereas the explicit modeling used in the previous sections has

to be done usually by hand. Hence the interaction approach is the one typically seen in the

literature. However, it is a major drawback of the interaction approach that is does not directly

provide effect estimates within subgroups or at selected covariate values, which is essential

for the interpretation of interactions. One has to construct such estimates usually by hand,

and not all statistical packages support to compute confidence intervals for the constructed

estimates. And in my experience this construction is cumbersome and error-prone, especially in

models with several interactions or categorical covariates (see the next two sections). Hence I

recommend, especially if a researcher starts to investigate effect modifications for the first time,

to use an explicit modeling, as this approach is more transparent. However, this is restricted to

the case where at least one of the interacting covariates is binary or categorical.



18.3. INTERACTIONS 257

One may argue that the interaction approach is always the preferable one, as it avoids to select

(arbitrarily) a perspective with respect to the effect modification. However, this is in my opinion

not a valid argument. As shown above an interpretation of an interaction parameter without

taking its actual impact on subgroup specific effects into account will be always incomplete,

hence it is dangerous to look only at the value of the interaction parameter. Hence the translation

of an interaction parameter into an effect modification is an important step in the analysis. One

may now argue that one should always look at both perspectives of effect modification. I agree

with this, however, this should not imply that we have to present the results of both perspectives

in any paper. It is allowed to select only one of the two perspectives, and typically we are

especially interested in one of our covariates, so it makes sense to focus on how the effect of this

covariate may depend on other covariates. It is only necessary to keep in mind that there are two

perspectives, and to ensure that the perspective neglected is not an important one. As a simple

example, let us consider the results of a randomised trial randomising general practitioners

(GPs) to an intervention group and a control group. In the intervention group the GPs were

informed about recent developments in antidepressant drug treatment and called to use new,

effective drugs. To evaluate the study, for each GP the rate of hospitalisation for depression

within one year among all patients with a incident diagnosis of depression was computed and

averaged over GPs. The following table summarizes the results stratified by practice size:

practice size

small large

control group 10.7% 33.4%

intervention group 27.8% 30.4%

OR 3.21 0.87

The above representation suggests that the practice size modifies the intervention effect: A

clear deterioration, i.e. increase of hospitalisations in the intervention group in small practices

and a slight improvement in large practices. However, a closer look at the table reveals that in

the control group reflecting the current situation GPs from small practices are much better in

handling patients with depressions than GPs in large practices. If we speculate that the original

difference among small and large practices is due to that GPs in small practices have more time

to talk with their patients and hence can manage patients suffering from depressions without

drug treatment, then we have to conclude that here the intervention modifies the differences

between GPs in small and large practices: The focus on drug therapy prevents GPs in the small

practices to remain superior to GPs in large practices.

This example illustrates also another problem of using the term “effect modification”. It

sounds like an action, which really takes place, and that we have a responsible, active actor.

However, the only thing we do is to describe a difference of effect (estimates), and we have in

any case to think carefully about possible explanations for this. The situation is similar to that

of using the term “effect”, which we discussed in Section 11.1.
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18.4 Modeling effect modifications in several covariates

In some applications one might be interested in investigating the modifying effect of several

covariates on the effect of other covariates. As long as we can structure the problem in a way

that the effect of a single covariate depends only on one other binary or categorical covariate,

one can try the explicit modeling approach of the first section, even if the binary/categorical

covariate modifies the effect of several covariates. However, as soon as the effect of one co-

variate depends on several covariates, this approach becomes cumbersome, and if at least two

continuous covariates interact, one is forced to use the interaction term approach by adding an

interaction term for each pair of interacting covariates. The interpretation of the interaction

terms remain: They describe how the effect of one covariate changes if the value of the other

increases by 1.0. In any case one need to compute subgroup specific effects to complete the

analysis.

We have seen above, that it can be rather tricky to obtain subgroup specific effects, but there

is a simple general strategy to do this. If we are interested in the effects of the other covariates

for a specific value x of the covariate X j, we just have to insert this value into the regression

model formula and we obtain a new regression model describing exactly the effect of the other

covariates if X j = x. For example, let us assume we are interested in a model with three

covariates allowing that X3 modifies the effect of X1 and X2. Hence we have a model with the

interaction terms X1X3 and X2X3:

β0 + β1x1 + β2x2 + β3x3 + β13x1x3 + β23x2x3

If we now want to know the effect of X1 and X2 if x3 = 7.3, we just have to impute 7.3 for x3 in

the above expression and obtain

β0 + β1x1 + β2x2 + β3 × 7.3 + β13x1 × 7.3 + β23x2 × 7.3

= (β0 + 7.3 × β3) + (β1 + 7.3 × β13)x1 + (β2 + 7.3 × β23)x2

So the effect of X1 is β1 + 7.3 × β13 and the effect of X2 is β2 + 7.3 × β23 if X3 = 7.3, and what

remains is only to insert the estimates.

Remark: If one is interested in analysing the modifying effect of X3 and X2 together on the

effect of X1, the inclusion of the interaction terms X1X2 and X1X3 is equivalent to modelling the

effect β1 of X1 as a linear function of x2 and x3:

β0 + β1(x2, x3)x1 + . . .

= β0 + (α0 + α2x2 + α3x3)x1 + . . .

= β0 + α0x1 + α2x1x2 + α3x1x3 + . . .

One can now of course ask, whether there is again an interaction between X2 and X3 with

respect to the modifying effect. For example if X2 is age and X3 is sex, one might be interested

in evaluating, whether the effect is especially large in old females. Then one can extend the
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above approach to

β0 + β1(x2, x3)x1 + . . .

= β0 + (α0 + α2x2 + α3x3 + α23x2x3)x1 + . . .

= β0 + α0x1 + α2x1x2 + α3x1x3 + α23x1x2x3 + . . .

i.e. we have to include the product of three covariates. Such interaction terms are called higher

order interactions.

18.5 The effect of a covariate in the presence of interactions

Whenever we start to include an interaction term, e.g. X1X2 in a regression model, it is our aim

to investigate how X1 modifies the effect of X2 and vice versa. This implies that we assume a

priori that the effect of X1 varies in dependence on X2 and vice versa. So it does not make sense

to talk about “the effect of X1” or “the effect of X2”.

Although a sole effect of a covariate involved in an interaction is logically not existing, one

can find in the medical literature very frequently that the effect of covariates are reported al-

though they are involved in interactions. There are two reason for this: First many statistical

packages report in the analysis of a regression model with interaction terms some estimates

which look like effect estimates. Let us look for example again at the output in analysing the

data of Figure 18.1 using the interaction term approach.

variable beta SE 95%CI p-value

intercept 47.714 7.845 [25.933,69.495] 0.004

dose 0.143 0.158 [-0.295,0.581] 0.416

sex 2.829 11.094 [-27.974,33.631] 0.811

dosesex 0.446 0.223 [-0.173,1.065] 0.116

To understand the meaning of β̂1 = 0.143 and β̂2 = 2.829, let us look again at our model:

µ(x1, x2) = β0 + β1x1 + β2x2 + β12x1x2 .

If we set x2 = 0, we obtain

µ(x1, 0) = β0 + β1x1 ,

hence β̂1 is just the estimate for the effect of vitamin B in females. And it is completely unjus-

tified to call this the effect of vitamin B intake in general. If we set x1 = 0, we obtain

µ(0, x2) = β0 + β2x2 ,

hence β̂2 is just the estimate for the effect of sex if we have a vitamin B intake of 0. It is again

unjustified to call this the general sex effect and it is moreover an unreliable extrapolation, as

the range of vitamin B in the data is from 30 to 70 mg. So it makes no sense to look at these



260 CHAPTER 18. EFFECT MODIFICATION AND INTERACTIONS

estimates. We have to regard them usually as nuisance parameters like the intercept parameter.

We can only use them as a technical aid in some computations, e.g. for subgroup specific effects.

The second reason is that one can define overall effects of a covariate by taking the average

of subgroup specific effects. For example one can in the example above define the overall dose

effect as the average of the dose effect in male and female mice, respectively, i.e. as 1
2
βA
1
+ 1

2
βB
1
,

which we can simply estimate by 1
2
β̂A
1
+ 1

2
β̂B
1
, and we may obtain also confidence intervals

and p-values. Some statistical packages provide such estimates and inference in their standard

output as “main effects”, especially if they are designed to analyse experimental data. There are

also subtle differences between different programs with respect to choosing the weights. Some

packages give equal weights to the subgroups, some weight the subgroups by their size.

Whether such overall effects are meaningful has to be discussed in each single application. It

happens that in spite of a main interest in assessing effect modifications, one still is interested in

confirming that a covariate has an effect at all. Then the overall effect provides one reasonable

and simple way to answer the question of interest. One has only to be aware of that in the case

of a qualitative interaction, i.e. both positive and negative subgroup specific effects, the overall

effect may be close to 0 and hence one may fail to demonstrate an overall effect. An alternative

is then to perform a test of the null hypothesis

H0 : β
A
1 = 0 and βB1 = 0 ,

i.e. to test whether both subgroup specific effects are 0. If one can reject this null hypothesis,

one has also shown that the covariate has some effect. In the case of no qualitative interactions,

this test is much less powerful than testing the average effect, so it cannot be recommended in

general. Hence we have again here the situation that one typically starts with testing the overall

effect, but that in presence of a qualitative interaction one applies post hoc the second test, and

has to convince the reader of a paper that this decision is justified.

Remark: The interpretation of the regression parameter of a covariate X j, which is not involved

in any interaction term, is not affected by the presence of interactions terms for other covariates.

This parameters describe still the effect of a difference in X j of 1.0, if we compare two subjects

agreeing in all other covariates. This interpretation is obviously independent of how the other

covariates may interact together.

18.6 Interactions as deviations from additivity

In the medical literature one can find frequently that interactions are interpreted as deviations

from additivity of effects, and one can find the terms synergistic and antagonistic effects for

positive or negative interaction terms. The rationale behind this is illustrated at hand of the

example in Figure 18.8. In subjects continuing smoking who received only standard antihy-

pertensive treatment we can observe an average decrease of blood pressure by 2.1. In subjects

continuing smoking with additional physical exercises we observe an average decrease of 9.5,

i.e. physical exercises increase the effect of the standard treatment by 7.4. In subjects quitting
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Figure 18.8: Results of a ran-

domised clinical trial in smok-

ers on adding physical exercises

to standard antihypertensive treat-

ment, stratified by continuing or

quitting smoking
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Figure 18.9: The concept of addi-

tivity and its relation to the interac-

tion term illustrated at hand of the

data of Figure 18.8.

smoking who received only standard antihypertensive treatment we can observe an average de-

crease of blood pressure by 13.3, so quitting smoking seem to increase the effect of the standard

treatment by 11.2. From these numbers we may now expect, that the average decrease in sub-

jects quitting smoking and performing additional physical exercises is 2.1 + 7.4 + 11.2 = 20.7.

However, we observe an average decrease in blood pressure of 27.9 in these subjects, i.e. a

higher value than we have to expect from the effects of adding additional physical exercises or

quitting smoking alone.

This synergistic effect corresponds to a positive interaction term as illustrated in Figure 18.9.

Let

X1 =

{

1 physical exercises added to standard treatment

0 standard treatment only

and

X2 =

{

1 quitting smoking

0 continuing smoking

and we consider a regression model with an interaction:

µ(x1, x2) = β0 + β1x1 + β2x2 + β12x1x2 .

Then the effect of adding physical exercises to the standard treatment is

µ(1, 0) − µ(0, 0) = β1

and the effect of quitting smoking under the standard treatment is

µ(0, 1) − µ(0, 0) = β2
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so that in the case of additivity of these two effects we expect

µ(1, 1) − µ(0, 0) = β1 + β2

but in our model we have

µ(1, 1) − µ(0, 0) = β1 + β2 + β12

such that β12 equals the access compared to additivity. Similar, a negative value of β12 would

correspond to an antagonistic effect, i.e. µ(1, 1) is smaller than expected.
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Figure 18.10: Illustrations of qualitative interactions. Left side: The effect of X1 is positive if

X2 = 1, but negative if X2 = 0 and the effect of X2 is positive for both values of X1. Right side:

The effect of X1 is positive, if X2 = 0 , but negative if X2 = 1 and the effect of X2 is positive, if

X1 = 0 , but negative if X1 = 1.

It is, however, misleading to interpret any positive interaction parameter as synergy and any

negative parameter as antagonism. If, for example, we exchange the values 1 and 0 in one of

the covariates in the example above, the interaction parameter will become negative. So it is

essential that both covariates have a positive effect in order to associate a positive interaction

with synergy. We have already learned that we have to be careful with using the term “effect

of a covariate” in the presence of interactions, and it is indeed not enough to look at single

effect estimates. Whenever we want to talk about synergistic or antagonistic effects, we have to

sort out the situations illustrated in Figure 18.10, where in at least one of the two perspectives

of effect modification the modified effect changes its sign. Such situations are often referred

to as “qualitative interactions”, whereas situation as in Figure 18.8, where we have a positive

treatment effect in subjects continuing smoking as well as quitting smoking and a positive effect

of quitting smoking in both treatment arms are often referred to as “quantitative interactions”.

So only if we have the situation of a quantitative interaction and all subgroup specific effects are

positive, it makes sense to interpret a positive interaction parameter as synergy and a negative

interaction parameter as antagonism.

To check the presence of a quantitative interaction, in the case of two binary covariates we just

have to look at the two subgroup specific effects in both perspectives. In the case of continuous
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covariates we have to define a “natural” range of the covariate and to check, whether the effects

have identical signs at both boundaries of the range. However, a small deviation, e.g. an effect

of 1.0 at one boundary and an effect of -0.15 at the other boundary may be still regarded as a

quantitative interaction, as we make the rather strong assumption that the change of the effect is

linear over the whole range. So such a result may be more an indication, that the effect vanishes

if we approach the boundary, rather than that the sign of the effect really changes.
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Figure 18.11: An artificial dataset
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Figure 18.12: The same dataset as

in Figure 18.11, now with the out-

come on a logarithmic scale on the

y-axis.

18.7 Scales and interactions

Figure 18.11 shows the results of an experimental study investigating the effect of two binary

covariates X1 and X2 on the number of mutations in a cell culture. The mean values suggest that

going from x1 = 0 to x1 = 1 doubles the amount of mutated cells in both groups defined by X2
(5 to 10 if x2 = 0 and 10 to 20 if x2 = 1), so there is no effect modification. However, analysing

this data by linear regression, we obtain a highly significant interaction, as we have different

differences in the two subgroups: 10-5=5 and 20-10=10. So the absence and presence of an

interaction of effect modification depends on whether we consider additive or multiplicative

effects. If one views the data on a logarithmic scale (Figure 18.12) for the outcome, the apparent

interaction vanishes.

A similar situation occur in the following example, again with two binary covariates, but now

with a binary outcome. The (true) model can be described by the following probabilities:
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x1 x2 π(x1, x2) logit π(x1, x2)

0 0 0.61 0.45

0 1 0.78 1.27

1 0 0.72 0.94

1 1 0.91 2.31

If we look at the probability values, we have exact additivity: π(1, 0) = π(0, 0) + 0.11, π(0, 1) =

π(0, 0) + 0.17, π(1, 1) = π(0, 0) + 0.11 + 0.17. However, on the logit scale we have a distinct

interaction, cf. Figure 18.13. Similar, in a Cox model we may have an interaction on the log

hazard scale, which correspond to additivity on the hazard scale, or vice versa.
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Figure 18.13: Illustrations of a simple model with additivity on the probability scale, but an

interaction on the logit scale.

Hence in any interpretation of (quantitative) interactions or effect modification, one has to

consider always the choice of the scale as one possible explanation. However, a change in

the sign of the effect of a covariate, i.e. a qualitative interaction, is robust against monotone

transformations of the scale, so here this explanation cannot be valid.

Remark: In the case of a continuous outcome, one may decide to transform the outcome variable

if one feels that the standard scale is inadequate. However, here the same considerations as with

transforming the outcome to obtain a better linear fit have to be applied (cf. Section 17.1).

18.8 Ceiling effects and interactions

Many outcome variables cannot be decreased or increased to any degree. There may be biolog-

ical bounds, e.g. a certain fat intake is necessary for human beings to survive. Many outcome

variables are also bounded by the measurement instrument: For example if assessing the quality

of life of a patient by scores computed from the marks on a questionnaire, a patient cannot score
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more than the maximal number of points. If there are now subjects in a study with values close

to such a bound, they may be limited in showing a relation to covariates, as they cannot further

improve or deteriorate. We then say that a regression analysis may suffer from ceiling (or floor)

effects.

Ceiling effects are often a source for interactions, as they may prevent one subgroups of

subjects to be sensitive to the covariate of interest. For example we may consider another study

in GPs looking at the effect of calling GPS to use more time on counseling in patients suffering

from depressions. In such an intervention study we may observe the following result with

respect to rates of hospitalisation:

practice size

small large

control group 10.7% 33.4%

intervention group 10.1% 12.4%

OR 0.94 0.28

One may conclude that the intervention is working fine in GPs in large practices whereas in

small practices there is no effect. However, it is not allowed to interpret this in the way that

GPs in the small practices did not follow the suggestions of the intervention study or lacked

compliance in another manner. As visible from the results in the control group GPs in small

practice are already today good in handling patients with depressions and the intervention brings

the GPs from large practices just up to the level of GPs from small practices. If we assume that

10% of all patients with depression are in general robust against treatment by GPs and can only

be managed by hospitalisation, than the GPs in small practices had no chance to improve, and

hence no chance to show an effect of the intervention in contrast to the GPs from large practices.

So this interaction may be due to a floor effect of GPs in small practices.

So whenever one observes an interaction, one should take a closer look at the data and ask

oneself whether it may be due to a ceiling effect. If it can be explained this way, it does not

mean that the interaction is invalid or an artefact. It just means that one has to take the ceiling

effect into account in the subject matter interpretation of the interaction.

18.9 Hunting for interactions

From a general research methodological point of view it is highly desirable to detect existing

interactions. If we use regression models to describe and understand the influence of several

covariates X1, X2, . . . , Xp, interactions will make a major contribution to the understanding, as

the dependence of the effect of X1 on X2 may allow some insights into the mechanism how

X1 influences the outcome. Qualitative interactions are of special importance, as they typically

challenge the traditional interpretation of covariates as universal risk factors in the particular

setting. So this suggests to look systematically for interactions, whenever we fit a regression

model to asses the effect of covariates.
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Unfortunately an investigation of interactions or effect modification suffers usually from a

poor power. Let us compare the situation of estimating the overall effect β1 of a covariate X1 in

a model without interactions with estimating the difference between the two subgroup specific

effects βA
1
and βB

1
, i.e. an interaction with a binary covariate X2. If 50% of our sample shows

X2 = 1 and the other half X2 = 0, then each of the two estimates β̂
A
1
and β̂B

1
are based on half of

the data. This implies, that their standard errors are inflated by a factor of
√
2 in comparison to

the standard error of β̂1. And taking the difference β̂
B
1
− β̂A

1
increases the standard error further

by a factor of
√
2, such that the standard error of the difference β̂B

1
− β̂A

1
is hence twice the

standard error of β̂1. In the situation of a quantitative interaction, we may have β
A
1
= 0.5β1 and

βA
1
= 1.5β1, such that β

B
1
−βA

1
= β1, i.e. the parameter of interest is of the same magnitude in both

situations. However, if our study has a power of 80% to reject the null hypothesis H0 : β1 = 0,

it will have only a power of 29% to reject the null hypothesis H0 : β
A
1
= βB

1
of no interaction

due to the larger standard error of β̂B
1
− β̂A

1
. If we want to have a similar power for the detection

of a difference in the sub group specific effects, we have to assume that the difference between

βB
1
and βA

1
is twice as β1, i.e. a rather extreme effect modification. And in most applications of

regression models we are typically glad to have a sample size allowing to estimate the effect

of the covariates with sufficient precision to prove that they have an effect, such that we cannot

expect a large power to detect interactions.

The second problem with a systematic investigation of interactions is multiplicity. If we have

5 covariates, we have already 10 pairs of covariates, i.e. 10 interaction terms we can add (or even

more, if some of the covariates are categorical). So if we just look at the resulting p-values, we

cannot regard the significance of an interaction as a reliable indicator for its existence. One can

find nevertheless sometimes the results of such a search in medical publications without any

attempt to take the multiplicity problem into account, just reporting typically one significant

interaction out of 10 or 20 tested. This is of no great value, and it is one example of the bad

tradition of “hunting for p-values”.

So whenever one starts to think about investigating interactions systematically, one should be

aware of that one tries something which has only a very limited chance to produce any reliable

result. We have a rather low power to detect true interactions and simultaneously a high chance

to produce false signals. To reduce the multiplicity problem the first step should be to define a

(small) subset of all possible interactions or effect modifications, which are a priori of special

interest or likely to indicate effect modifications of interest. There are three major sources to

identify such interactions:

a) We may find hints on interactions in the literature. These may be due that authors have

already investigated effect modification or that studies varying in important population

characteristics vary with respect to their effect estimates of a covariate. Personal com-

munications with experienced researchers in the field of interest may be a similar source,

as they may have experienced that some traditional factors are of limited value in some

subjects.

b) Certain effect modifications may be more plausible than others. Subject matter reasons

may suggest that a factor has different meanings in different subgroups. For example in

looking at the association between physical occupation and back pain as considered in
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Exercise 8.6, it will not be very surprising that the four categories of physical occupation

may show a different effect in males and females due to differences in the physiology and

biomechanics between women and men. In contrast, an interaction between social class

and sex might be more difficult to explain.

c) If a study focus on a particular covariate, then interactions with this covariate are of higher

interest than interactions among other covariates.

Once we have identified a very few of such interactions, we should include them as primary

hypotheses in the study protocol, and if we succeed in confirming these hypothesis in the present

study, we can include this as a result in our publication without being accused for extensive

hunting for p-values. In addition, as a hypotheses generating part of the analysis, one may look

systematically at all possible interactions.

In any case, any investigation of interactions should focus on the relevance of the implied

effect modifications, not only just on the p-values of the interaction parameters. So a basis for

the systematic investigation may be a table structured like that shown in Table 18.1.

effect effect of covariate

modifying age sex occupation ...

covariate βage βsex δ̂blue vs. white δ̂blue vs. others δ̂white vs. others ...

effect at – ... ... ... ... ...

age of 30 [...,...] [...,...] [...,...] [...,...] ...

age effect at – ... ... ... ... ...

age of 70 [...,...] [...,...] [...,...] [...,...] ...

difference – ... ... ... ... ...

[...,...] [...,...] [...,...] [...,...] ...

effect ... – ... ... ... ...

in males [...,...] – [...,...] [...,...] [...,...] ...

sex effect ... – ... ... ... ...

in females [...,...] – [...,...] [...,...] [...,...] ...

difference ... – ... ... ... ...

[...,...] – [...,...] [...,...] [...,...] ...

effect for ... ... – – – ...

blue collar [...,...] [...,...] ...

effect for ... ... – – – ...

occupation white collar [...,...] [...,...] ...

effect for ... ... – – – ...

others [...,...] [...,...] ...

p-value ... ... – – – ...

... ... ... ... ... ... ... ...

Table 18.1: A proposal for a tabular presentation of relevant results for a systematic investiga-

tion of interactions.
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18.10 How to analyse effect modification and interactions with

Stata

We start with the example of Figure 18.1:

. clear

. use vitaminB

. list

+---------------------+

| dose sex weight |

|---------------------|

1. | 30 1 73 |

2. | 30 0 51 |

3. | 40 1 67 |

4. | 40 0 56 |

5. | 50 1 81 |

|---------------------|

6. | 50 0 53 |

7. | 70 1 93 |

8. | 70 0 58 |

+---------------------+

We define the two version of the covariate dose, one for the males and one for the females:

. gen dosemale=dose*(sex==1)

. gen dosefemale=dose*(sex==0)

Now we can put this into a regression model:

. regress weight dosemale dosefemale sex

Source | SS df MS Number of obs = 8

-------------+------------------------------ F( 3, 4) = 22.57

Model | 1472.97143 3 490.990476 Prob > F = 0.0057

Residual | 87.0285714 4 21.7571429 R-squared = 0.9442

-------------+------------------------------ Adj R-squared = 0.9024

Total | 1560 7 222.857143 Root MSE = 4.6645
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------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

dosemale | .5885714 .1576874 3.73 0.020 .1507611 1.026382

dosefemale | .1428571 .1576874 0.91 0.416 -.2949532 .5806675

sex | 2.828571 11.09429 0.25 0.811 -27.97412 33.63126

_cons | 47.71429 7.844848 6.08 0.004 25.9335 69.49507

------------------------------------------------------------------------------

We obtain directly the two sex specific effect estimates of the vitamin B intake. To assess the
difference between the two effect estimates, we can use the lincom command.

. lincom dosemale-dosefemale

( 1) dosemale - dosefemale = 0

------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .4457143 .2230036 2.00 0.116 -.173443 1.064872

------------------------------------------------------------------------------

If we assume that we are also interested in showing that the vitamin B intake has any effect, we
can perform the strategy discussed in Section 18.5 and look on the average dose effect:

. lincom 0.5*dosemale+0.5*dosefemale

( 1) .5*dosemale + .5*dosefemale = 0

------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .3657143 .1115018 3.28 0.031 .0561356 .6752929

------------------------------------------------------------------------------

So we have evidence for an effect of the dose. For illustrative purposes we also perform the
alternative strategy to test the null hypothesis of no effect in both male and female mice:

. test dosemale dosefemale

( 1) dosemale = 0

( 2) dosefemale = 0
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F( 2, 4) = 7.38

Prob > F = 0.0455

Note that the p-value is bigger, reflecting the lower power of this approach.

If we want to follow the approach to add interaction terms, we can define the product of the
covariates dose and sex explicitly

. gen dosesex=dose*sex

and add it to the regression model:

. regress weight dose sex dosesex

Source | SS df MS Number of obs = 8

-------------+------------------------------ F( 3, 4) = 22.57

Model | 1472.97143 3 490.990476 Prob > F = 0.0057

Residual | 87.0285714 4 21.7571429 R-squared = 0.9442

-------------+------------------------------ Adj R-squared = 0.9024

Total | 1560 7 222.857143 Root MSE = 4.6645

------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

dose | .1428571 .1576874 0.91 0.416 -.2949532 .5806675

sex | 2.828571 11.09429 0.25 0.811 -27.97412 33.63126

dosesex | .4457143 .2230036 2.00 0.116 -.173443 1.064872

_cons | 47.71429 7.844848 6.08 0.004 25.9335 69.49507

------------------------------------------------------------------------------

Note that the results for dosesex agree with those of the first lincom command above.

To obtain the slope estimates within the two sex groups we have just to realize that within the

females (sex==0) our model reads

µ(x1, 0) = β̃0 + β̃1x1

such that the effect of the vitamin B intake in females is equal to the effect of dose in the output

above. Within males (sex==1) the model reads

µ(x1, 1) = β̃0 + β̃1x1 + β̃2 + β̃12x1 (18.1)

= β̃0 + β̃2 + (β̃1 + β̃12)x1 . (18.2)



18.10. HOWTOANALYSE EFFECTMODIFICATIONAND INTERACTIONSWITH STATA271

such that the slope estimate for the males (sex==1) can be computed as

. lincom dose+dosesex

( 1) dose + dosesex = 0

------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .5885714 .1576874 3.73 0.020 .1507611 1.026382

------------------------------------------------------------------------------

The tests about any effect of the vitamin B intake can be performed by

. lincom 0.5*dose + 0.5*(dose+dosesex)

( 1) dose + .5*dosesex = 0

------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .3657143 .1115018 3.28 0.031 .0561356 .6752929

------------------------------------------------------------------------------

and by

. test dose dosesex

( 1) dose = 0

( 2) dosesex = 0

F( 2, 4) = 7.38

Prob > F = 0.0455

One can also use Stata’s xi: construct to add the product of the covariates to the regression
model:

. xi: regress weight i.sex*dose

i.sex _Isex_0-1 (naturally coded; _Isex_0 omitted)

i.sex*dose _IsexXdose_# (coded as above)

Source | SS df MS Number of obs = 8
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-------------+------------------------------ F( 3, 4) = 22.57

Model | 1472.97143 3 490.990476 Prob > F = 0.0057

Residual | 87.0285714 4 21.7571429 R-squared = 0.9442

-------------+------------------------------ Adj R-squared = 0.9024

Total | 1560 7 222.857143 Root MSE = 4.6645

------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_Isex_1 | 2.828571 11.09429 0.25 0.811 -27.97412 33.63126

dose | .1428571 .1576874 0.91 0.416 -.2949532 .5806675

_IsexXdose_1 | .4457143 .2230036 2.00 0.116 -.173443 1.064872

_cons | 47.71429 7.844848 6.08 0.004 25.9335 69.49507

------------------------------------------------------------------------------

Note however that this does not work if both covariates are continuous.

We now consider the example of Figure 18.4.

. use hyper

. list in 1/10

+----------------------------+

| id age smoking hyper |

|----------------------------|

1. | 1 47 0 0 |

2. | 2 53 1 1 |

3. | 3 50 1 1 |

4. | 4 40 1 1 |

5. | 5 33 1 0 |

|----------------------------|

6. | 6 47 0 0 |

7. | 7 54 1 1 |

8. | 8 38 0 0 |

9. | 9 59 0 1 |

10. | 10 67 0 1 |

+----------------------------+

and would like to investigate the effect of smoking as a function of age. Since age is a continu-
ous covariate, we have to follow the interaction approach:
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. gen agesmoking=age*smoking

. logit hyper age smoking agesmoking

Iteration 0: log likelihood = -877.28077

Iteration 1: log likelihood = -795.08929

Iteration 2: log likelihood = -793.22769

Iteration 3: log likelihood = -793.22413

Iteration 4: log likelihood = -793.22413

Logistic regression Number of obs = 1332

LR chi2(3) = 168.11

Prob > chi2 = 0.0000

Log likelihood = -793.22413 Pseudo R2 = 0.0958

------------------------------------------------------------------------------

hyper | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0512461 .0064305 7.97 0.000 .0386426 .0638497

smoking | 2.955036 .5061917 5.84 0.000 1.962918 3.947153

agesmoking | -.0326584 .0087536 -3.73 0.000 -.0498152 -.0155016

_cons | -3.905869 .3847093 -10.15 0.000 -4.659885 -3.151852

------------------------------------------------------------------------------

Now we can assess the change of the effect of smoking over 10 years

. lincom agesmoking*10

( 1) 10*[hyper]agesmoking = 0

------------------------------------------------------------------------------

hyper | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | -.3265839 .0875364 -3.73 0.000 -.4981521 -.1550156

------------------------------------------------------------------------------

and we can use lincom’s or option to obtain the result as the factor corresponding to the
increase of the odds ratio:

. lincom agesmoking*10, or

( 1) 10*[hyper]agesmoking = 0

------------------------------------------------------------------------------
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hyper | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .7213839 .0631474 -3.73 0.000 .6076525 .8564018

------------------------------------------------------------------------------

Now we look at the effect of smoking at age 35 and age 75:

. lincom _b[smoking] + 75 * _b[agesmoking]

( 1) [hyper]smoking + 75*[hyper]agesmoking = 0

------------------------------------------------------------------------------

hyper | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | .5056565 .2059231 2.46 0.014 .1020546 .9092584

------------------------------------------------------------------------------

. lincom _b[smoking] + 35 * _b[agesmoking]

( 1) [hyper]smoking + 35*[hyper]agesmoking = 0

------------------------------------------------------------------------------

hyper | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | 1.811992 .2217385 8.17 0.000 1.377393 2.246591

------------------------------------------------------------------------------

Finally, we take a look at how to perform likelihood ratio tests. (Which are again slightly more
powerful.) First we test the null hypothesis of no interaction by comparing the model above
with a model without an interaction:

. estimates store A

. logit hyper age smoking

Iteration 0: log likelihood = -877.28077

Iteration 1: log likelihood = -801.10435

Iteration 2: log likelihood = -800.2788

Iteration 3: log likelihood = -800.27872

Logistic regression Number of obs = 1332

LR chi2(2) = 154.00

Prob > chi2 = 0.0000
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Log likelihood = -800.27872 Pseudo R2 = 0.0878

------------------------------------------------------------------------------

hyper | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0344195 .0043207 7.97 0.000 .0259511 .0428878

smoking | 1.139242 .1214511 9.38 0.000 .901202 1.377281

_cons | -2.936872 .2597851 -11.31 0.000 -3.446042 -2.427703

------------------------------------------------------------------------------

. lrtest A

Likelihood-ratio test LR chi2(1) = 14.11

(Assumption: . nested in A) Prob > chi2 = 0.0002

Next we test the null hypothesis of “no effect of smoking at all” by comparing the full model
with the model in which all terms involving smoking are omitted:

. logit hyper age

Iteration 0: log likelihood = -877.28077

Iteration 1: log likelihood = -846.18595

Iteration 2: log likelihood = -846.07003

Iteration 3: log likelihood = -846.07002

Logistic regression Number of obs = 1332

LR chi2(1) = 62.42

Prob > chi2 = 0.0000

Log likelihood = -846.07002 Pseudo R2 = 0.0356

------------------------------------------------------------------------------

hyper | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .0320192 .0041419 7.73 0.000 .0239012 .0401373

_cons | -2.278813 .2361742 -9.65 0.000 -2.741706 -1.81592

------------------------------------------------------------------------------

. lrtest A

Likelihood-ratio test LR chi2(2) = 105.69

(Assumption: . nested in A) Prob > chi2 = 0.0000
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18.11 Exercise Treatment interactions in a randomised clinical

trial for the treatment of malignant glioma

The dataset gliom includes data from a randomised clinical trial comparing a mono chemother-

apy (BCNU) with a combination therapy (BCNU + VW 26) for the treatment of malignant

glioma in adult patients. The variable time includes the survival time (in days) after chemother-

apy (if died==1), or the time until the last contact with the patient (if died==0).

a) It has been claimed that the benefit from the combination therapy depends on the per-

formance status of the patient. The variable ps divides the subjects into those with poor

performance status (ps==0) and those with good performance status (ps==1). Try to clar-

ify the claim based on the available data. Try to support the results of your analysis by

appropriate Kaplan Meier curves.

b) Some people have even raised doubt about that the combination therapy is of any benefit

for the patients. Try to clarify this question based on the available data.

c) It has been claimed that the benefit from the combination therapy depends on the age of

the patient. Try to clarify this claim based on the available data. Try to support the results

of your analysis by appropriate Kaplan Meier curves.

d) The dataset includes besides the variable ps also a variable karnindex, which divides

the subjects into three groups according to their Karnofsky index, a more detailed mea-

surement of the performance status. Try to reanalyse a) again using this variable. Try to

support the results of your analysis by appropriate Kaplan Meier curves.


