
Chapter 6

Logistic regression

In this chapter we introduce the logistic regression model and illustrate its use by two examples.

6.1 The definition of the logistic regression model

So far we have considered only the case where the outcome of interest is a continuous variable.

Often the outcome of interest is a binary variable Y . In this case, we can use a logistic regression

model. In a logistic regression model we model the probability that Y takes the value 1 as a

function of the covariates X1, X2, . . . , Xp. We will denote the conditional probability to observe

Y = 1 given the covariate values x1, x2, . . . , xp by

π(x1, x2, . . . , xp)

Now one may start with considering a model for π, for example

π(x1, x2, . . . , xp) = β0 + β1x1 + β2x2 + . . . + βpxp

This is possible, but it has the disadvantage, that the quantity on the left side is a number between

0 and 1, and the right side can take any value between −∞ and ∞. To overcome this problem,

we can transform the left side of the equation. The most popular transformation is the so called

logit transformation, i.e. we apply the logit function

logit p = log
p

1 − p
,

such that we obtain the so called logistic regression model

logit π(x1, x2, . . . , xp) = β0 + β1x1 + β2x2 + . . . + βpxp .

The logit function is illustrated in Figure 6.1. The transformation from the probability scale

(i.e. the interval [0, 1]) to the logit scale (i.e. the interval [−∞,∞]) is illustrated in Figure 6.2.
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Figure 6.1: The logit function

Figure 6.2: The logit transformation

The middle of the probability scale, i.e. 0.5, is transformed to the middle of the logit scale,

i.e. 0.0, a probability of 0.3 is transformed to -0.85 on the logit scale, and a probability of 0.95

is transformed to 2.94.

The interpretation of the regression parameters in a logistic regression model is similar to

that in the classical regression model. However, instead of describing a change in the expected

value of Y , they describe now the change in the probability to observe Y = 1 expressed on the

logit scale. So if we now compare subjects with identical covariate values except of a difference

of ∆ in covariate x j, then the conditional probability to observe Y = 1 differs on the logit scale

by ∆ × β j.
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6.2 Analysing a dose response experiment by logistic regres-

sion

In a dose response experiment we typically expose units (like animals, cell cultures or patients)

to different doses of a substance and investigate, how the probability of a response increases

with increasing dose. Table 6.1 and Figure 6.3 show the results of such an experiment, where

the toxic effect of a substance A and a possible protective effect of oxygen were investigated.

For each of 7 different doses of substance A, 200 cells were exposed to this dose and the number

of cells with a damage were counted. 100 of the 200 cells were exposed to an increased level

of oxygen. From the results in Table 6.1 and Figure 6.3 we can see, that the toxicity increases

with increasing dose but that exposure to oxygen has a protective effect. It remains to quantify

the effects in a useful manner.

dose(mg)

10 20 30 40 50 60 70

normal oxygen .1 .28 .53 .77 .91 .98 .99

increased oxygen .03 .09 .17 .45 .74 .91 .97

Table 6.1: The results of a dose response experiment: Relative frequency of damaged cells in

each dose group stratified by oxygen exposure level. (Relative frequencies are expressed as

fractions, not percentages.)
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Figure 6.3: The data of Table 6.1

visualised

−
4

−
2

0
2

4
lo

g
it
(r

e
l.
 f

re
q
)

0 20 40 60 80
dose

normal oxygen

incr. oxygen

Figure 6.4: The same visualisation,

but now on the logit scale

We cannot use the classical regression model here, because our lines are far away from being

linear. This is due to the fact, that they are forced to stick to the interval [0,1]. However, if we

transform the y-axis by a logit transformation, we obtain two rather parallel lines (Figure 6.4),

suggesting that we can describe this data by a logistic regression model. We consider variables
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defined for each single cell in the experiment, i.e. the outcome

Yi =

{

1 if cell i is damaged

0 if cell i is not damaged

and the covariates

Xi1 = dose of substance A applied to cell i (in mg)

and

Xi2 =

{

1 if cell i is exposed to increased oxygen level

0 if cell i is exposed to normal oxygen level
.

With π(x1, 0) we denote the probability that a cell exposed to dose level x1 is damaged at normal

oxygen level and with π(x1, 1) we denote the probability that a cell exposed to dose level x1 is

damaged at increased oxygen level. The results of Table 6.1 suggest that for example π(30, 0)

is about 0.53 and π(30, 1) is about 0.17.

Then we can formulate the logistic model

logit π(x1, x2) = β0 + β1x1 + β2x2

Fitting this model to the data yields estimates of β̂1 = 0.117 and β̂2 = −1.46. So increasing

the dose level by 10 mg increases the probability of cell damage by 1.17 on the logit scale (if

we keep the oxygen level fixed), and exposing a cell to an increased oxygen level decreases the

probability of cell damage by 1.46 (if we keep the dose of substance A fixed). Since 12.49 ×

β1 = −β2 we can also say, that increasing the level of oxygen has the same effect as decreasing

the dose of substance A by 12.49.

Of course, using a standard statistical package to fit a logistic model we will also obtain

standard errors, confidence intervals and p-values. So the output may look like

variable beta SE 95%CI p-value

intercept -3.374 0.212 [-3.790,-2.958] <0.001

dose 0.117 0.006 [0.105,0.128] <0.001

oxygen -1.456 0.168 [-1.786,-1.126] <0.001

So we can conclude here, that we have a rather precise knowledge about the regression co-

efficients (because the confidence intervals are rather small) and that there is no doubt about,

that both the dose of substance A and exposure to increased oxygen levels have an effect on the

probability of cell damage (because both p-values are very small).

We can use the parameter estimates also to estimate the probability of cell damage for a given

dose. For example logit π(25, 0) describes the probability (on the logit scale) of cell damage,

if the cell is exposed to 25mg of substance A at normal oxygen level. We can estimate this

number as

logit π̂(25, 0) = β̂0 + β̂1 × 25 + β̂2 × 0 = −0.46 .
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To obtain this probability on the probability scale, we can just apply the inverse of the logit

transformation, i.e.

logit −1(t) =
1

1 + e−t
.

So we can estimate the probability of cell damage after exposition to 25mg of substance A and

normal oxygen level as

logit −1(−0.46) =
1

1 + e−(−0.46)
= 0.39 .

Remark: Our example is a little bit artificial, because in such an experiment there is no need to

use so many cells at each dose level. We have used this large number to obtain results which

allow to visualize the logit transformation. In practice in a dataset with a continuous covariate,

usually all values of the covariate are different, and it is difficult to visualise the dataset by a

scatter plot, because Y takes only the value 0 and 1. Fortunately, a logistic regression model

do not require that we can draw a figure like Figure 6.3. We can apply it even if we have only

one cell for each dose level. Such a situation is visualised in Figure 6.5 for the case of a single

covariate X. The figure shows both the raw data as well as the fitted logistic model.
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Figure 6.5: Visualisation of a dataset with a single covariate X (dots) and a binary outcome Y

(empty and filled dots) and the fitted logistic regression model (dotted line).

Remark: Although it is possible to back-transform an estimated probability on the logit scale to

the probability scale, it is not possible to back-transform a regression parameter estimate to the

probability scale. This is illustrated in Figure 6.6: The same difference on the logit scale can

result in different differences on the probability scale.

6.3 How to fit such a dose response model with Stata

We start with looking at the data set:
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Figure 6.6: The same difference on the logit scale of 1.0 can correspond to different differences

on the probability scale

. use toxic, clear

. list in 1/10

+-------------------------------+

| dose oxygen cell damage |

|-------------------------------|

1. | 10 0 1 0 |

2. | 10 0 2 0 |

3. | 10 0 3 0 |

4. | 10 0 4 0 |

5. | 10 0 5 0 |

|-------------------------------|

6. | 10 0 6 0 |

7. | 10 0 7 0 |

8. | 10 0 8 0 |

9. | 10 0 9 0 |

10. | 10 0 10 0 |

+-------------------------------+

We use Stata’s table command to get a quick overview about the data:

. table dose damage oxygen, c(freq)

------------------------------------

| oxygen and damage

| ---- 0 --- ---- 1 ---

dose | 0 1 0 1

----------+-------------------------

10 | 90 10 97 3
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20 | 72 28 91 9

30 | 47 53 83 17

40 | 23 77 55 45

50 | 9 91 26 74

60 | 2 98 9 91

70 | 1 99 3 97

------------------------------------

We fit the logistic regression model by Stata’s logit command. The logit command expects
the outcome as the first argument and then the covariates:

. logit damage dose oxygen

Iteration 0: log likelihood = -958.27957

Iteration 1: log likelihood = -569.58618

Iteration 2: log likelihood = -525.72626

Iteration 3: log likelihood = -520.93341

Iteration 4: log likelihood = -520.83619

Iteration 5: log likelihood = -520.83614

Logit estimates Number of obs = 1400

LR chi2(2) = 874.89

Prob > chi2 = 0.0000

Log likelihood = -520.83614 Pseudo R2 = 0.4565

------------------------------------------------------------------------------

damage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

dose | .116534 .0058846 19.80 0.000 .1050003 .1280677

oxygen | -1.455875 .1682545 -8.65 0.000 -1.785647 -1.126102

_cons | -3.373973 .2120248 -15.91 0.000 -3.789534 -2.958413

------------------------------------------------------------------------------

Again the reader should focus only on the numbers of interest, i.e. the regression coefficients
for the covariates dose and oxygen and the corresponding standard errors, confidence intervals
and p-values.



6.4. ESTIMATINGODDSRATIOSANDADJUSTEDODDSRATIOSUSINGLOGISTIC REGRESSION45

6.4 Estimating odds ratios and adjusted odds ratios using lo-

gistic regression

Let us start with an example of an epidemiological study, in which we investigate the influence

of risk factors on the development of allergies among children. The outcome variable of interest

is the allergy status of the child at age 6, i.e.

Yi =

{

1 if child i develops an allergy until age 6

0 otherwise

and the first risk factor we look at is the maternal allergy status, i.e.

X1i =

{

1 if the mother of child i is suffering from allergies

0 otherwise

If we are interested in analysing the association between the maternal allergy status and the

allergy status of the child, we can look at a cross tabulation of these variables:

Y = allergy child

0 =no 1 =yes n rel.freq. (%) odds OR

1 =yes 264 142 406 35.0 35.0
65.0
= 0.54

X1 = allergy mother
0 =no 516 203 719 28.2 28.2

71.8
= 0.39

0.54
0.39
= 1.37

We can observe, that out of 406 children frommothers with allergies 142, i.e. 35.0%, suffer from

an allergy, whereas out of 719 children from mothers without an allergy 203, i.e. 28.2%, suffer

from an allergy. Now there is a tradition in epidemiology to express the difference between the

two groups of children, i.e. the difference between 35.0% and 28.2%, as an odds ratio. The first

step in computing an odds ratio is to express relative frequencies as empirical odds by dividing

the relative frequency with 100 minus the relative frequency. Odds are just numbers which takes

expressions like fifty:fifty or 90:10 literally, i.e. fifty:fifty gives an odds of 1.0 and 90:10 gives

an odds of 9.0. In our example we obtain odds of 0.54 and 0.39, as shown in the table above.

Then we have just to take the ratio of these two odds, which gives here an odds ratio of 1.37,

indicating that the odds for having a child with an allergy is 1.37 times higher in mothers with

an allergy compared to mothers without an allergy.

Now let us define odds ratios a little bit more formally. Let π(x) denote the probability of

Y = 1 given X = x, such that π(0) is the probability that a mother without allergies has a child

with an allergy and π(1) is the probability that a mother with an allergy has a child with an

allergy. Then the odds for having a child with an allergy are
π(1)

1−π(1)
for a mother with an allergy

and
π(0)

1−π(0)
for a mother without allergies. So the odds ratio is defined as

OR =

π(1)

1−π(1)

π(0)

1−π(0)

.



46 CHAPTER 6. LOGISTIC REGRESSION

Now there exist a strong connection between odds ratios and logistic regression models, because

if we take the logarithm of the odds ratio (and apply the mathematical rule log a
b
= log a− log b),

then we obtain

logOR = log
π(1)

1 − π(1)
− log

π(0)

1 − π(0)
= logit π(1) − logit π(0) .

Hence the logarithm of an odds ratio is nothing else but the difference between the probabilities

π(1) and π(0) on the logit scale. Now it is not surprising, that we can obtain odds ratios also

from a logistic regression model. If we consider a simple logistic regression model for our data,

this reads

logit π(x) = β0 + β1x

and β1 is the increase in π(x) on the logit scale, if we go from x = 0 to x = 1, i.e.

β1 = logit π(1) − logit π(0)

and hence

β1 = logOR .

Or with other words, if we exponentiate β1, we obtain the odds ratio:

eβ1 = OR .

Indeed, is we fit a logistic regression model to our data, we obtain β̂1 = 0.313 and e
0.313
= 1.37,

i.e. we obtain the same result as above.

Now analysing the association between maternal atopy and allergy of the child without taking

other variables into account can be misleading, because atopic mothers may tend to reduce the

risk of the child by avoiding exposures like smoking. Hence for a more substantiated analysis

we have to take smoking into account. One way to do this is to eliminate the effect of smok-

ing by restricting the analysis to smoking women or non-smoking women, respectively, i.e. to

stratify by the smoking status of the mother. This results in one table for the smoking women:

Y = allergy child

0 =no 1 =yes n rel.freq. (%) odds OR

1 =yes 78 62 140 44.3 44.3
55.7
= 0.79

X1 = allergy mother
0 =no 297 148 445 33.3 33.3

66.7
= 0.50

0.79
0.50
= 1.60

and one for the non-smoking women:

Y = allergy child

0 =no 1 =yes n rel.freq. (%) odds OR

1 =yes 186 80 266 30.1 30.1
69.9
= 0.43

X1 = allergy mother
0 =no 219 55 274 20.1 20.1

79.9
= 0.25

0.43
0.25
= 1.71
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Among smoking mothers with an allergy 44.3% of the children suffer from allergies, whereas

among smoking mothers without an allergy 33.3% of the children suffer from allergies, resulting

in an odds ratio of 1.60. Among non smoking mothers with an allergy 30.1% of the children

suffer from allergies, whereas among non smoking mothers without an allergy 20.1% of the

children suffer from allergies, resulting in an odds ratio of 1.71. So in both subgroups we obtain

odds ratios which are larger than those in the analysis of the whole population.

The explanation for this is, that in the first analysis of the whole population we mix the

effects of maternal smoking and maternal allergy status. Among mothers without an allergy

we find 61.9% smokers, whereas among mothers with an allergy we find only 34.5% smokers,

i.e. mothers with an allergy tend to smoke less frequent. However, smoking itself seems to

be unfavorable for the children, because we can find more children with an allergy among the

smoking women. So the effect of maternal allergy status is bigger within each subgroup than

in the whole population, because in the latter analysis the unfavorable effect of having a mother

with an allergy is partially compensated by the the fact, that mothers with an allergy tend to

smoke less. So we have here the a situation similar to those considered in Chapter 4: The

effects of maternal smoking and maternal allergy are confounded.

It remains the task to summarize the two odds ratios of 1.60 and 1.71 into one number, i.e. to

do some type of averaging. Here we can again use logistic regression. To see this, let us start to

define the odds ratio in each subgroup in a more formal way. Let π(x1, x2) denote the probability

to have a child with an allergy for a mother with allergy status x1 and smoking status x2, where

the latter refers to a second covariate

Xi2 =

{

1 if mother of child i is smoking

0 if mother of child i is not smoking
.

Then for a smoking mother with an allergy the odds for having a child with an allergy is
π(1,1)

1−π(1,1)

and for a smoking mother without an allergy it is
π(0,1)

1−π(0,1)
, such that the odds ratio is

ORs =

π(1,1)

1−π(1,1)

π(0,1)

1−π(0,1)

.

Similar, for a non smoking mother the odds ratio is

ORns =

π(1,0)

1−π(1,0)

π(0,0)

1−π(0,0)

.

Now in a logistic regression model with the two covariates X1 and X2 we assume

logit π(x1, x2) = β0 + β1x1 + β2x2

such that β1 is the change of the probability to have a child with an allergy on the logit scale if

we switch from x1 = 0 (no maternal allergy) to x1 = 1 (maternal allergy), keeping the smoking

status x2 fixed. With other words

β1 = logit π(1, x2) − logit π(0, x2) = log
π(1, x2)

1 − π(1, x2)
− log

π(0, x2)

1 − π(0, x2)
= log

π(1,x2)

1−π(1,x2)

π(0,x2)

1−π(0,x2)
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or

eβ2 =

π(1,x2)

1−π(1,x2)

π(0,x2)

1−π(0,x2)

So for x2 = 0 and x2 = 1 we obtain

eβ2 =

π(1,0)

1−π(1,0)

π(0,0)

1−π(0,0)

= ORs and e
β2 =

π(1,1)

1−π(1,1)

π(0,1)

1−π(0,1)

= ORns

So in a logistic regression model we just assume, that the true odds ratios in the two subgroups

are identical. This is of course a reasonable assumption, because if one wants to average the

two empirical odds ratios, one implicitly assumes, that the true effects are at least of similar

magnitude. Fitting a logistic regression model to our data results in an output like

variable beta SE 95%CI p-value

intercept -1.362 0.127 [-1.610,-1.113] <0.001

allergym 0.502 0.141 [0.226,0.778] <0.001

smokem 0.656 0.139 [0.384,0.928] <0.001

By exponentiating the effect estimate β̂1 = 0.502 for maternal allergy status, we obtain eβ̂1 =

1.65, i.e. an odds ratio lying in between the two odds ratios we have observed in the subgroups.

Since this odds ratio takes the confounding effect of smoking into account, we call it an adjusted

odds ratio, or more specific the odds ratio between maternal allergy and allergy of the child

adjusted for smoking.

Since the logistic regression model allows to include several covariates, we can use it to

adjust simultaneously for several potential confounders by adding them as covariates. Such a

confounder might be the smoking of the father, because this may increase the risk of allergies

in a child and women suffering from allergies might tend to choose a non-smoking partner. We

will consider such an example with several confounders in the next exercise. Logistic regression

allows of course also to adjust for confounders measured as continuous variables.

Remark: Logistic regression is only one method to average odds ratios across different sub-

groups. The Mantel Haenszel procedure is an alternative, which us also used frequently in the

medical literature. It gives typically results similar to that of a logistic regression.

Remark: It can of course happen that odds ratios in different subgroups are rather different, such

that it is questionable to average them. We will discuss in Chapter 18 techniques to compare

odds ratios in different subgroups.
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6.5 How to compute (adjusted) odds ratios using logistic re-

gression in Stata

Stata has actually two commands for logistic regression: logit and logistic. They do exactly

the same with the only difference, that logit present the regression parameters on the logit

scale, whereas logistic presents the results as odds ratios. This affects also the standard

errors and the confidence intervals, but the p-values are of course identical.

Now let us take a look on our dataset:

. use allergy1, clear

. list in 1/10

+----------------------------------------+

| childnr allergyc allergym smokem |

|----------------------------------------|

1. | 838 0 0 1 |

2. | 50 0 0 0 |

3. | 584 0 0 0 |

4. | 704 1 0 0 |

5. | 152 1 0 0 |

|----------------------------------------|

6. | 722 0 1 0 |

7. | 991 0 0 1 |

8. | 559 1 0 1 |

9. | 563 0 1 1 |

10. | 423 0 0 1 |

+----------------------------------------+

We have the binary outcome variable allergyc and the two covariates allergym and smokem.

To compute the unadjusted odds ratio for the association between the maternal allergy status
and the allergy status of the child we can use

. logistic allergyc allergym

Logistic regression Number of obs = 1125

LR chi2(1) = 5.49

Prob > chi2 = 0.0191

Log likelihood = -690.71179 Pseudo R2 = 0.0040

------------------------------------------------------------------------------

allergyc | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
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-------------+----------------------------------------------------------------

allergym | 1.367219 .1818668 2.35 0.019 1.053444 1.774453

------------------------------------------------------------------------------

To obtain the odds ratio adjusted for maternal smoking we can use

. logistic allergyc allergym smokem

Logistic regression Number of obs = 1125

LR chi2(2) = 28.48

Prob > chi2 = 0.0000

Log likelihood = -679.2193 Pseudo R2 = 0.0205

------------------------------------------------------------------------------

allergyc | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

allergym | 1.651714 .2328059 3.56 0.000 1.253024 2.177259

smokem | 1.927018 .2672664 4.73 0.000 1.468348 2.528964

------------------------------------------------------------------------------

6.6 Exercise Allergy in children

In the above mentioned study on the development of allergies in early childhood also infor-

mation on the smoking and allergy status of the father was recorded. This information can be

found in the dataset allergy2.

a) Compute the odds ratio between the paternal allergy status and the allergy status of the

child and adjust this odds ratio for the effect of paternal smoking. Can you explain, why

the two odds ratios are so similar?

b) What happens, if you adjust for maternal allergy status instead of paternal smoking? Can

you explain the difference between the unadjusted and adjusted odds ratio?

c) If you make a cross tabulation between maternal allergy status and paternal smoking (do

it!), you will find a tendency that mothers with an allergy tend to have a non-smoking

partner. If you fit a logistic regression model with Maternal allergy, Maternal smoking

and Paternal smoking (do it!), you can see, that paternal smoking has an influence on

the allergy status of the child. This suggest, that paternal smoking is a confounder for

the association between the maternal allergy status and the allergy status of the child.

However, if we remove in the model above the covariate Paternal smoking (do it!), we

can observe, that the odds ratio for Maternal allergy does not change. Can you explain

this?
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d) Fit a logistic regression model with all four covariates.

d.1) What can we conclude from this analysis with respect to the effect of the single

covariates?

d.2) Can we say something about the covariate with the smallest and the biggest effect?

d.3) How big is the difference in the risk to develop an allergy between a child of smok-

ing parents both suffering from allergies and a child of non smoking, allergy-free

parents?

d.4) Can we now make a final judgement of the magnitude of the effect of maternal and

paternal allergy status on the development of allergies in early childhood?

6.7 More on logit scale and odds scale

Using odds ratios to express the effect of covariates on a binary outcome involes two steps. The

first is to transform probabilities to odds, i.e. to consider the transformation p→ odds (p) =
p

1−p

of the probability scale (i.e. the interval [0, 1]) to the odds scale (i.e. the interval [0,∞]), cf.

Figure 6.7. The second is to use ratios to measure the ”distance” between two odds. This we can

also express by saying that the odds scale is a multiplicative scale. The transformation from the

odds scale to the logistic scale is a simple logarithmic transformation, i.e. logit p = log odds (p),

which just expresses that exponentiated differences on the logit scale correspond to ratios on the

odds scale.

Figure 6.7: The odds transformation

In some areas of medical research it is widespread to present results from logistic regression

model as odds ratios, in other areas it is more common to report effect estimates on the logit

scale. One may argue that odds ratios are easier to interpret than differences on the logit scale,

because an odds ratio of 2.1 means that something (namely the odds of Y = 1) is increased by

a factor 2.1, if we compare subjects differing by 1 in the corresponding covariate. However,

odds ratios suffer from the disadvantage to be asymmetric with respect to positive and negative

effects. For example if we recode a binary covariate X j by exchanging 0 and 1, the correspond-

ing effect estimate β̂ j switches to −β̂ j, whereas the corresponding estimated odds ratio switches

from ÔR j to
1
ˆOR j

. So if we just look on a table with effect estimates for different covariates,
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it is not so simple to see that two covariates with estimated odds ratios of 2.5 and 0.4, respec-

tively, have actually the same magnitude of the effect, but just in opposite directions, whereas

the corresponding values β̂ j = 0.92 and β̂ j = −0.92 clearly indicate this. For this reason many

authors try to code or recode their covariates in a manner, such that at the end all estimated odds

ratios are above 1.0.

Odds ratios are mainly used to express the effect of binary covariates, but it is also possible

to use them for continuous covariates. Then they just describe the factor by which the odds of

Y = 1 changes when we compare two subjects differing by 1 unit in the covariate of interest,

keeping all other covariates fixed.

Odds ratios and effect estimates on the logit scale share the problem that they do not refer to

differences on the probability scale, which makes it (especially for beginners) difficult to get an

impression, whether an estimated effect is big or small. For this reason we have summarized in

Table 6.2 how some selected differences on the probability scale translate to differences on the

logit scale or odds ratios, respectively. If the probabilities coincide with the probability of Y = 1

for two subjects differing only in the covariate X j by 1, then the difference on the logit scale

corresponds to the regression coefficient β and the odds ratio is equal to exp(β). The values

in Table 6.2 may allow some orientation about what is a big and what is a small odds ratio or

effect on the logit scale. In the long run most users of logistic regression develop a feeling for

this, because they see in the literature the effect sizes which are typical in applications in their

specific field.

p1 p2 logit p2 − logit p1 OR=
p2

1−p2
/
p1

1−p1

50% 60% 0.41 1.50

65% 75% 0.48 1.62

80% 90% 0.81 2.25

40% 60% 0.81 2.25

55% 75% 0.90 2.45

70% 90% 1.35 3.86

30% 70% 1.69 5.44

40% 80% 1.79 6.00

50% 90% 2.20 9.00

Table 6.2: Selected pairs of probabilities and their corresponding differences on the logit scale

and odds ratios.

Remark: If we consider a logistic regression model with for example three covariates, we have

logit π(x1, x2, x3) = log
π(x1, x2, x3)

1 − π(x1, x2, x3)
= β0 + β1x1 + β2x2 + β3x3

and if we exponentiate both sides of the equation we obtain

odds (π(x1, x2, x3)) =
π(x1, x2, x3)

1 − π(x1, x2, x3)
= eβ0eβ1x1eβ2x2eβ3x3

= eβ0(OR1)
x1(OR2)

x2(OR3)
x3 .
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Here OR j is the odds ratio between Y and the covariate X j adjusted for the two other covariates.

So the logistic regression model can be also expressed as an multiplicative model on the odds

scale, and sometimes it is described in this way in the literature. However, in any case we

obtain the same model, we use just different – but equivalent – mathematical representations.

Especially p-values referring to hypotheses test of no effect of an covariate are independent of

the chosen representation.

T    

Logistic regression is a simple tool to analyse the effect of covariates on a binary

outcome. Covariate effects can be expressed as differences on the logit scale or as

odds ratios.


